

ASCOS certification case study: Aircraft system failure management

J.F. Delaigue, J.P. Heckmann, J. Teyssier, S. Bravo Muñoz (all APSYS), G. Temme (Certiflyer), E. van de Sluis, M. Stuip (NLR), S. Bull (Ebeni)

This certification case study proposes an Autonomous Failure Management System installed on RPAs to test a newly proposed ASCOS certification approach (as documented in ASCOS D1.3) in two ways. First: to test how the ASCOS approach can provide a common certification methodology that enables a certification for the Total Aviation System, and secondly to explore how this approach could be used to further develop the common safety standards (e.g. EUROCAE ED78A) already existing.

Coordinator	L.J.P. Speijker (NLR)
Work Package Manager	A.L.C. Roelen (NLR)
Grant Agreement No.	314299
Document Identification	D4.1
Status	Approved
Version	1.1
Date of Issue	5/11/2015
Classification	Restricted

This page is intentionally left blank

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	
Issue:	1.1	Classification:	

Document Change Log

Version	Author(s)	Date	Affected Sections	Description of Change
1.0	J.F. Delaigue et al.	25-02-2015	All	Version for approval by PMT
1.1	J.F. Delaigue et al.	11-05-2015	Executive Summary,	Minor corrections
			Abstract	

Review and Approval of the Document

Organisation Responsible for Review	Name of person reviewing the document	Date
NLR	A.L.C. Roelen	25-02-2015
TATM	H. Neufeldt	25-02-2015
TR6	B. Pauly, F. Orlandi	25-02-2015
APSYS	M. Feuvrier	25-02-2015
CAA UK	A. Eaton	25-02-2015
CertiFlyer	M. Heiligers	25-02-2015
Avanssa	N. Aghdassi	25-02-2015
Ebeni	A. Simpson	25-02-2015
Deep Blue	L. Save	25-02-2015
Organisation Responsible for Approval	Name of person approving the document	Date
NLR	A.L.C. Roelen	25-02-2015
NLR	L.J.P. Speijker	11-05-2015

Document Distribution

Organisation	Names
European Commission	M. Kyriakopoulos
NLR	L. Speijker, A. Rutten, M.A. Piers, P. van der Geest, A. Roelen, J.J Scholte, J. Verstraeten, R. Wever, E. van de Sluis, M. Stuip
Thales Air Systems GmbH	G. Schichtel, JM. Kraus, H. Neufeldt
Thales Air Systems SA	B. Pauly, F. Orlandi
Airbus Defence and Space APSYS	S. Bravo Muñoz, J.P. Heckmann, M. Feuvrier
Civil Aviation Authority UK	L. Young, A. Eaton, T. Longhurst, S. Barker, C. Gill
ISDEFE	I. Etxebarria, C. Regidor Gil
CertiFlyer	G. Temme, M. Heiligers
Avanssa	N. Aghdassi
Ebeni	A. Simpson, J. Denness, S. Bull, M. Shuker
Deep Blue	L. Save
JRC	W. Post, R. Menzel
JPM	J. P. Magny
TU Delft	R. Curran, H. Udluft, P.C. Roling
Institute of Aviation	K. Piwek, A. Iwaniuk
CAO	A. Ortyl, R. Zielinski
EASA	E. Isambert
FAA	J. Lapointe, T. Tessitore
SESAR JU	P. Mana
Eurocontrol	E. Perrin
CAA Netherlands	R. van de Boom
JARUS	R. van de Leijgraaf
SRC	J. Wilbrink, J. Nollet
ESASI	K. Conradi
Rockwell Collins	O. Bleeker
Dassault Aviation	B. Stoufflet, C. Champagne
ESA	T. Sgobba, M. Trujillo
EUROCAE	A. n'Diaye
TUV NORD Cert GmbH	H. Schorcht
FAST	R. den Hertog

ASCOS — Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of ASCOS partners

			Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	4
Issue:	1.1	Classification:	Restricted

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1 Page: Classification:

Acronyms

Acronym	Definition
AFM	Aircraft Flight Manual
ACAS	AirborneCollisionAvoidance System
AIS	Aeronautical Information Service
ALARP	As Low As Reasonably Practicable
АМС	Acceptable Means of Compliance
ANS	Air Navigation Service
ANSP	Air Navigation Service Provider
AoC	Area of Change
АТМ	Air Traffic Management
ATN	Aeronautical Telecommunications Network
AutoFailMS	Autonomous Failure Management System
CAA	Civil Aviation Authority
CCL	Common Certification Language
CNS	Communication, Navigation and Surveillance
АР	Autopilot
CS	CertificationSpecification
CSM	Continuous Safety Monitoring; Common Safety Method
EASA	European Aviation Safety Agency
EC	European Commission
E-OCVM	European Operational Concept Validation Methodology
EU	European Union
FANS	Future Air Navigation System
FAST	FutureAviation Safety Team
FHA	Functional Hazard Assessment
FMS	Flight Management Systems
FCOM	Flight Crew Operation Manual
EGPWS	Enhanced Ground Proximity Warning System
ΙCAO	International Civil Aviation Organization
ІМА	Integrated Modular Avionics

ASCOS — Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of ASCOS partners

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1 Page: Classification:

Acronym	Definition
MET	Meteorological Data
PSSA	Preliminary System Safety Assessment
RNP	Required Navigation Performance
RVSM	Reduced Vertical Separation Minima
RPA	Remote Piloted aircraft (referred only to the aircraft)
RPAS	Remote Piloted Aircraft System (RPA+RPS+C2 link)
RPS	Remote Pilot Station
SESAR	Single European Sky ATM Research
SSA	System Safety Assessment
STCA	Short Term Conflict Alert
TAS	Total Aviation System
UAV	Unmanned Aerial Vehicles
VNAV	Vertical NAVigation

Terminology

Airspace Class A	All operations must be conducted under IFR. All aircraft are subject to ATC clearance.
	All flights are separated from each other by ATC.
Airspace Class B	Operations may be conducted under IFR, SVFR, or VFR. All aircraft are subject to ATC
	clearance. All flights are separated from each other by ATC
Airspace Class C	Operations may be conducted under IFR, SVFR, or VFR. All aircraft are subject to ATC
	clearance (country-specific variations notwithstanding). Aircraft operating under IFR
	and SVFR are separated from each other and from flights operating under VFR, but
	VFR flights are not separated from each other. Flights operating under VFR are given
	traffic information in respect of other VFR flights
Assurance contract	An assurance contract is a documented formal arrangement between two or more modules within argument architecture.[1]
Autonomous mode	Highest automation mode.
	In the autonomous mode, the RPAS can adapts its speed and execute flight commands
	received from ATC, it can as well take decisions relative to failure management or/and
	to an external event. In this mode the remote pilot is considered as a backup. The
	remote pilot can, at any moment, revert to manned mode.
Collision Avoidance	The capability to take the appropriate avoidance action. Designed to act only if
	Separation Assurance has been breached. [9]
DAL	All of those planned and systematic actions to substantiate, at an adequate level of
	confidence, that errors in requirements, design and implementation have been
	identified and corrected such that the system satisfies the applicable certification basis [9]
Datalink	In this Use Case the term datalink refers to the communication datalink between the
	ATC and the RPAS.
Detect and Avoid	The capability to see, sense or detect conflicting traffic and take the appropriate
	action. ('Detect and Avoid' is the combination of 'Separation Assurance' and 'Collision
	Avoidance') [9]
	The D&A capability considered here only addresses hazards arising from the vicinity of
	other airborne aircraft. The definition therefore differs from that of ICAO which
	considers other hazards such as weather or ground based obstacles.
Intermediary mode	Automation modes between manned and autonomous mode, depending on flight
	characteristic (weather conditions, type of airspace) several mode of automation
	can be envisaged. The characteristics of each potential intermediary mode are not in
	the scope on this Use Case

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1

Page: Classification: 8 Restricted

Manned mode	Lowest automation mode. The RPAS is totally manned by remote pilot, AutoFailMS deactivated.
	Note: Certain logics related to recovery actions referred to one single system (e.g.
	switch to emergency electric bus bar after total loss of normal electric bus bar) might
	be implemented in the RPAS. This implementation might be active at any autonomy
Manuad an based	level
Manned on-board aircraft	Current aircraft manned by pilot on board
Pilot in command	Pilot responsible for a flight, either on board or on a remote pilot station
Pilot on board	Pilot in the aircraft
C2 link	The datalink used for the purpose of command and control functions in a RPAS., RPAS
	C2 functions are usually separated into telecommand and telemetry[8]
Remote back up	Secondary remote station. A remote back up station provides a backup solution in
station	case of failure of the primary remote station
Remote Pilot	Pilot in a remote pilot station located on ground
Remote Pilot	Cockpit located on ground.
Station	
Remote primary	Remote station associated to a specific flight.
station	
Second failure	Second Failure is considered as any failure on RPAS systems that the AutoFailMS,
	already in failure, is expected to manage.
Telecommand	Telecommand regroups information coming from the remote pilot station (RPS) where
	the RPIL is located to the RPA (uplink or forward link). [8]
Telemetry	Telemetry regroups information coming from the RPA to the RPS (downlink or return
	link). [8]
Uncontrolled RPAS	The term "uncontrolled RPAS" is used in this Use Case to refer to an RPAS that cannot
	be managed by the remote pilot (e.g. loss of C2) nor by the AutoFailMS (loss or
	erroneous AutoFailMS).

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	9
Issue:	1.1	Classification:	Restricted

This page is intentionally left blank

Executive Summary

One of the objectives of ASCOS projects is to build a certification methodology that could consider changes where several stakeholders are involved, this certification methodology should not only establish sound safety objectives on a shared change but as well to ensure that the potential new hazards created by that change are actually considered. ASCOS Deliverable D1.3 has defined a high level certification methodology that meets both objectives, this methodology is based on claims and sub-claims decomposition and allows considering current standards as a part of the methodology (safety standards used for product development and standards for safety assurance in operation) This global methodology addresses the interface between stakeholders following the claim and sub-claim structure; in this use Case the interfaces has been managed by analyzing the impact of the stakeholders on each other and proposing standards (or modification in the current standards) that enable to answer to the claims and subclaims.

The chosen system is the Automated Failure Management System (AutoFailMs) installed on an RPAS, that system replaces the pilot in all decision making and surveillance tasks normally performed by a pilot on board, in case of failure, both the AutoFailMs and the ATM need to answer in a coordinated way so the potential safety effects were mitigated.

This Use Case applies the proposed ASCOS D1.3 certification methodology in two different ways:

- First, this Use Case applies the ASCOS D1.3 certification methodology to the AutoFailMs installed in an RPAS in order to test how this approach (as documented in ASCOS D1.3) can provide a common certification methodology that enables a certification for a change to the Total Aviation System.
- Second, this Use Case uses the ASCOS D1.3 methodology to suggest improvements to further develop the common safety standards (e.g. EUROCAE ED_78A) already existing.

This Use Case concludes that

- In general terms, the claim structure proposed originally does not necessarily match the standards. However it is possible to tailor the proposed ASCOS certification methodology (as documented in ASCOS D1.3) in order to adapt it. This process of tailoring and refinement is described in Section 7.1.
- The ASCOS methodology D1.3 can also being used to further develop current standards. It has been found out that the ARP4754A/ED79A could be improved by the introduction of the ATM interface and that the human quality assurance (Human DAL) needs to be developed. The proposed ASCOS methodology D1.3 has also been used to perform a high level revision of a potential adaptation of EUROCAE ED_78A to general operations. It has been found out that the proposed ASCOS D1.3 certification methodology could suggests improvements to the EUROCAE ED_78A.

Ref:	ASCOS_WP4_APSYS_D4.1	Page:	11
Issue:	1.1	Classification:	Restricted

Content

Ex	Reviev Docum Acrony Termir		2 2 3 5 7 10
	List of	Figures	14
	List of	Tables	15
1	Introd	uction	18
	1.1	Background	18
	1.2	Objectives	18
	1.3	Approach	18
2	Stage	1: Define the change	20
	2.1	Introduction	20
	2.2	Presentation of the RPAS	20
	2.3	Approach to Failure Management	21
	2.3.1	Failure Management basic concepts	21
	2.4	Description of the Autonomous Failure Management System	24
	2.5	Interfaces with other TAS stakeholders	25
		Air Traffic Control	26
	2.5.2	Remote pilot	30
	2.5.3	Maintenance	30
	2.5.4	RPAS operation organization	30
2	2.6	Conclusion	30
3	Stage	2: Define the certification argument	32
	3.1	Introduction	32
	3.2	Claim 0: The failure management system (AutoFailMS) contributes to acceptably safe RPAS	
		operations	33
		Context C0-1: Definition of operations of the Autonomous Failure Management System	35
		Context CO-2: Level of safety	41
		Context CO-3: RPAS as adaptation of existing aircraft	43
		Context C0-4: Autonomous Failure Management System part of larger change	44 44
		Context C0-5: Operational environment Claim 1: Introduction of <i>Autonomous Failure Management System</i> specified to contribute to safe	
	5.5	operations	45
	3.4	Claim 1.1: The specification of the AutoFailMS) satisfies the safety criteria (CO-2)	46
	3.4.1	Claim 1.1.1: Generic hazards are identified	47
	3.4.2	Claim 1.1.2: AutoFailMS provides sufficient mitigation of RPAS operation failures	48
	3.4.3	Claim 1.1.3: Sufficient mitigation of AutoFailMS (self) failure	50
	3.5	Claim 2: Realistic logical design satisfies specification	52
	3.5.1	Claim 2.1: the logical design satisfies the specification for the specified operational environment.	52
	3.5.2	Claim 2.2: the logical designs of RPAS operations assisted by AutoFailMS are compliant with ATM	
		requirements	55
	3.5.3	Claim 2.3: the logical design of the interface pilot in back up and AutoFailMS .is designed is such v	vay
		that the RPAs operations keeps the same level of safety performance	58
	3.6	Backing evidence	58
	3.7	Certification Argument	58

ASCOS — Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of ASCOS partners

Ref:	ASCOS_WP4_APSYS_D4.1	Page:	1
ssue:	1.1	_	estricte
4 Stage	3: Develop and agree a certification plan		60
4.1	Introduction		60
4.2	General Description of the change		60
4.3	Claims and arguments		61
4.3.1	High level claim		61
4.3.2	Sub claims		66
4.4	Coordinated approaches between domains		68
4.4 4.5	Content of the certification baseline Compliance Demonstration		68 69
4.5 4.6	Agreement on the Certification Plan		69
4.7	Continuing Safety activities		69
4.8	Example outline of a Certification Plan		70
5 Stage	4 Specification and Stage 5 Design		71
5.1	Safety Objectives		71
5.1.1	Safety Objectives		76
5.1.2	Safety requirements		80
5.2	Safety objectives and safety requirements usi	ing WP 3 techniques	81
5.2.1		es to several stakeholders is coherent with the d	esign.
			82
5.2.2		to several stakeholders is coherent with the des	sign 84
5.3	Conclusion		84
-	6 : Update of argument		85
7 Conclu	usions		87
7.1	Conclusion Use of D1.3 on RPAS operations se	upported by AutoFailMS. First Approach	87
7.1.1		0-2 can be expressed by a severity matrix at the l	evel of
	the Total Aviation System level		87
7.1.2	—	olders agree on the safety objectives imposed f	
7.1.3	severity at TAS)-2 to be completed by a guideline to cascade Sa	88 fotv
7.1.5	Objective from TAS to stakeholder level	-2 to be completed by a guideline to cascade Sa	88 88
7.1.4	-	ideline on production operational, and function	
	description of the change		89
7.1.5	Rec_05 D1.3 should propose TAS stakeholder	needs to agree about terminology.	89
7.1.6	Rec_06 D1.3 should set a task for the TAS sta	keholder to agree on a guideline to identify haza	ards. 90
7.1.7	Rec_07 D1.3 should define the level of the sc		90
7.1.8	Rec_08 D1.3 should set a task for the stakeho	older to agree on a guideline to identify requiren	
7.1.9	Pac. 00 D1 2 should sat a task for the stake	older to agree on a guideline to share requireme	90 ntc 01
	—	older to agree on a guideline to share requirement	
7.1.10	to humans		91
7.1.11	Rec_11 D1.3 should define a process to produ	uce lessons learned for future developments	91
		of the certification argument at different levels	. 91
7.2	Conclusion. D1.3 used to develop ED-78A.Sec		92
7.2.1	High level comparison between ED-78A and E		92
7.2.2	Comparison between recommendation of WI	P 4.1 to D1.3 and ED-78A guidelines	98
7.3	Final conclusion		101
Referenc	es		102
Appen	dix A Modified functions. RPAS vs. manned	l aircraft	103
Appen	-		111
Appen	dix C Areas of Change		113

ASCOS — Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of ASCOS partners

Ref:	ASCOS_WP4_APSYS_D4.1	Page:	13
Issue:	1.1	Classification:	Restricted
Арре	endix D Scenarios		121
D.1	Normal Scenarios		121
D.2	Failure Scenarios		128
D.3	Abnormal Scenarios		160
Appe	endix E RPAS Operation Hazards Classification		162
E.1	Eurocae UAV Severity matrix		162
E.2	JARUS RPAS Severity matrix		164
Арре	endix F ED-78A Guidelines for Approval of the prov	ision and use of Air Traffic servi	ces supported by
data	communications.		166

List of Figures

Figure 1 AutoFailMS concept	26
Figure 2 RPAS and ATC communication	27
Figure 3 Top Level Argument Structure (Claim 0)	34
Figure 4 Argument that AutoFailMS is specified to be acceptably safe (Claim 1)	45
Figure 5 Argument that AutoFailMS specification satisfies the safety criteria (Claim 1.1)	47
Figure 6 ARP4754A/ED79A Guidelines for development of civil aircraft and systems functional and	
dysfunctional requirements	53
Figure 7 ARP4754A/ED79A Safety requirements at aircraft and system level	54
Figure 8ATM requirements and ARP 4754A/ED79A. Functional requirements	56
Figure 9 ATM requirements and ARP 4754A/ED79A. Dysfunctional requirements	57
Figure 10 ESD as per WP 3.2	83
Figure 11 Fault tree	83
Figure 12 DAL cascading in independent systems	84
Figure 13 Update of certification argument	86
Figure 14 Process for ATS supported by DATA communication [17]	166

15

List of Tables

Table 2 ASCOS stage 1 conclusions31Table 2 Normal scenarios37Table 4 Loss of AutoFailMS without a second failure in the RPAS scenarios38Table 5 Loss of AutoFailMS scenarios39Table 6 Spurious AutoFailMS scenarios40Table 7 Erroneous AutoFailMS scenarios40Table 9 Abnormal scenarios41Table 9 Abnormal scenarios41Table 10 Error severity classification and top DAL55Table 11 Risk acceptance cases [17]72Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains75Table 14 Generic hazard. Safety effects on several domains75Table 15 Requirement for AutoFailMS (system level)80Table 16 Requirement for RPAS80Table 17 Requirement for Requirements for ATC81Table 12 Safety objectives TAS level.81Table 13 Requirement for Requirements for ATC81Table 14 Requirement for Requirements maintenance81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 24 Reguirement on difications of the RPAS in comparison to the manned aircraft systems110Table 24 Reguirements111Table 25 Assumption Operational Environment111Table 24 Requirements from Normal Scenarios120Table 25 Hazard classification and safety objectives relationship98Table 25 Hazard classification and safety objectives relationship112	Table 1 ASCOS assumptions for RPA related to ATC	
Table 4 Loss of AutoFailMS without a second failure in the RPAS scenarios38Table 5 Loss of AutoFailMS with a second failure in the RPAS scenarios39Table 6 Spurious AutoFailMS scenarios40Table 7 Erroneous AutoFailMS scenarios40Table 7 Erroneous AutoFailMS scenarios41Table 9 Abnormal scenarios41Table 10 Error severity classification and top DAL.55Table 11 Risk acceptance cases [17]72Table 12 Safety objectives.72Table 13 Generic hazard. Safety effects on several domains75Table 14 GRequirement for AutoFailMS (system level)80Table 14 Grequirement for AutoFailMS (system level)80Table 14 Grequirement for Requirements for ATC.81Table 22 Safety objectives80Table 13 Requirement for Requirements for ATC.81Table 14 Requirement for Requirements for ATC.81Table 21 Safety objectives TAS level87Table 22 Safety objectives TAS level88Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A98Table 25 Recommendation And safety objectives relationship99Table 26 References.102Table 27 Addition and/or modifications of the RPAS in comparison to the manned aircraft systems.110Table 23 Assumption Operational Environment.111Table 24 Assumption Communication112Table 24 Areas of Changes impacted by the RPAS operations20Table 24 Requirements from Normal Scenarios.216<	Table 2 ASCOS stage 1 conclusions	.31
Table 5 Loss of AutoFailMS with a second failure in the RPAS scenarios	Table 3 Normal scenarios	. 37
Table 6 Spurious AutoFailMS scenarios40Table 7 Erroneous AutoFailMS scenarios41Table 8 Intermittent AutoFailMS scenarios41Table 9 Abnormal scenarios41Table 10 Error severity classification and top DAL55Table 11 Risk acceptance cases [17]72Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains75Table 14 Generic hazard. Safety objectives79Table 15 Requirement for AutoFailMS (system level)80Table 16 Requirement for RPAS80Table 19 Requirement for Requirements for ATC81Table 20 Conclusion. First approach87Table 21 Safety objectives TAS level88Table 22 High level comparison between ED-78A and D1.397Table 25 Hazard classification and safety objectives relationship98Table 26 References102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 31 Assumption RPAS122Table 31 Assumption ATC112Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios126Table 34 Requirements from Normal Scenarios120Table 34 Requirements from Normal Scenarios120 <td>Table 4 Loss of AutoFailMS without a second failure in the RPAS scenarios</td> <td>.38</td>	Table 4 Loss of AutoFailMS without a second failure in the RPAS scenarios	.38
Table 7 Erroneous AutoFallMS scenarios.40Table 8 Intermittent AutoFallMS scenarios.41Table 9 Abnormal scenarios.41Table 10 Error severity classification and top DAL.55Table 11 Risk acceptance cases [17].72Table 12 Safety objectives.72Table 13 Generic hazard. Safety effects on several domains.75Table 14 Generic hazard. Safety objectives.79Table 15 Requirement for AutoFailMS (system level).80Table 16 Requirement for RPAS.80Table 17 Requirement for RPAS.80Table 18 Requirement for Requirements for ATC.81Table 20 Conclusion. First approach.81Table 22 High level comparison between ED-78A and D1.3.97Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship99Table 24 Susumption Operational Environment.111Table 24 Assumption Operational Environment.112Table 34 Assumption ATC.112Table 34 Requirements from Normal Scenarios.126Table 34 Requirements from Normal Scenarios.126Table 25 Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios.127Table 26 References.120Table 27 Addition and/or modifications of the RPAS operations.120Table 23 Assumption RPAS.126Table 34 Requirements from Normal Scenarios.126Table 34 Requirements from Normal Scenarios.126Table 35	Table 5 Loss of AutoFailMS with a second failure in the RPAS scenarios	.39
Table 8 Intermittent AutoFailMS scenarios41Table 9 Abnormal scenarios41Table 10 Error severity classification and top DAL55Table 11 Risk acceptance cases [17]72Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains75Table 14 Generic hazard. Safety objectives79Table 15Requirement for AutoFailMS (system level)80Table 16Requirement for RPAS80Table 19Requirement for Requirements for ATC81Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach87Table 21 Safety objectives TAS level88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommedation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References100Table 27 Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 23 Assumption Operational Environment111Table 34 Assumption RPAS112Table 34 Requirements from Normal Scenarios126Table 34 Requirements from Normal Scenarios126Table 35 Requirements from Normal Scenarios126Table 34 Requirements from Normal Scenarios120Table 35 Assumption AFC112Table 34 Requirements from Normal Scenarios126Table 35 Assumption AFC127Table 36 Safety Requirements from Scenarios Fai	Table 6 Spurious AutoFailMS scenarios	.40
Table 9 Abnormal scenarios41Table 10 Error severity classification and top DAL55Table 11 Risk acceptance cases [17]72Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains75Table 14 Generic hazard. Safety objectives79Table 15Requirement for AutoFailMS (system level)80Table 15Requirement for AutoFailMS (system level)80Table 17Requirement for RepAS80Table 17Requirement for Requirements for ATC81Table 18Requirement for Requirements for ATC81Table 20 Conclusion. First approach87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 25 Acsumption Operational Environment111Table 29 Assumption Operational Environment112Table 30 Assumption ATC112Table 31 Assumption RPAS120Table 32 Areas of Changes impacted by the RPAS operations.120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios126Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 34 Requirements from Normal Scenarios126Table 35 Asternation Row Scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios130Table 36 Safety Requi	Table 7 Erroneous AutoFailMS scenarios	.40
Table 10 Error severity classification and top DAL55Table 11 Risk acceptance cases [17]72Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains.75Table 14 Generic hazard. Safety objectives79Table 15 Requirement for AutoFailMS (system level)80Table 16 Requirement for RPAS.80Table 17 Requirement for Requirements for ATC81Table 18 Requirement for Requirements for ATC81Table 20 Conclusion. First approach.81Table 22 Ligh level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 27 Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Operational Environment111Table 29 Assumption ATC112Table 31 Assumption RPAS112Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios126Table 35 Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios127Table 36 Safety Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 34 Requirements from Scenarios Failure of AutoFailMS without a second failure in the RPAS scenarios134	Table 8 Intermittent AutoFailMS scenarios	.41
Table 11 Risk acceptance cases [17]72Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains.75Table 14 Generic hazard. Safety objectives79Table 15 Requirement for AutoFailMS (system level)80Table 16 Requirement for RPAS.80Table 17 Requirement for Requirements for ATC.81Table 18 Requirement for Requirements for ATC.81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.3.97Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 23 Assumption Operational Environment.111Table 24 Assumption Operational Environment.112Table 23 Assumption Ommunication.111Table 24 Assumption RPAS.112Table 24 Assumption RPAS.112Table 25 Assumption RPAS.112Table 26 References.102Table 27 Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Ommunication.111Table 29 Assumption RPAS.112Table 21 Asser of Changes impacted by the RPAS operations.126Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios.133Table 35 Req	Table 9 Abnormal scenarios	.41
Table 12 Safety objectives72Table 13 Generic hazard. Safety effects on several domains.75Table 14 Generic hazard. Safety objectives79Table 15Requirement for AutoFailMS (system level)80Table 16Requirement for RPAS.80Table 117Requirement for the remote pilot.81Table 12 Safety objectives TAS81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.3.97Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 23 Assumption RPAS112Table 31 Assumption RPAS112Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios126Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios129Table 35 Requirements from Normal Scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 10 Error severity classification and top DAL	.55
Table 13 Generic hazard. Safety effects on several domains.75Table 14 Generic hazard. Safety objectives79Table 15Requirement for AutoFailMS (system level)80Table 16Requirement for RPAS.80Table 117Requirement for the remote pilot.81Table 128Requirement for Requirements for ATC.81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.3.97Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 23 Assumption Operational Environment.111Table 30 Assumption APAS112Table 31 Asumption RPAS112Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios129Table 36 Safety Requirements from Scenarios Failure of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 11 Risk acceptance cases [17]	.72
Table 14 Generic hazard. Safety objectives79Table 15Requirement for AutoFailMS (system level)80Table 16Requirement for RPAS80Table 17Requirement for the remote pilot81Table 18Requirement for Requirements for ATC81Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach87Table 21 Safety objectives TAS level88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 28 Assumption Operational Environment111Table 30 Assumption Communication111Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations.120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 12 Safety objectives	.72
Table 15Requirement for AutoFailMS (system level)80Table 16Requirement for RPAS80Table 17Requirement for the remote pilot81Table 18Requirement for Requirements for ATC81Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 28 Assumption Operational Environment110Table 29 Assumption Communication.111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 35 Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 13 Generic hazard. Safety effects on several domains	.75
Table 16Requirement for RPAS.80Table 17Requirement for the remote pilot.81Table 18Requirement for Requirements for ATC81Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.3.97Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References.102Table 28 Assumption Operational Environment111Table 29 Assumption Communication.111Table 30 Assumption RPAS112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations.120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios.129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios.133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134	Table 14 Generic hazard. Safety objectives	.79
Table 17Requirement for the remote pilot.81Table 18Requirement for Requirements for ATC.81Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 28 Assumption Operational Environment111Table 29 Assumption Communication.111Table 30 Assumption RPAS112Table 31 Assumption RPAS112Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from Scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 15Requirement for AutoFailMS (system level)	.80
Table 18Requirement for Requirements for ATC.81Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 28 Assumption Operational Environment111Table 29 Assumption Communication.111Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations.120Table 34 Requirements from Normal Scenarios126Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134	Table 16Requirement for RPAS	.80
Table 19Requirement for Requirements maintenance81Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.3.97Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References.102Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations.120Table 34 Requirements from Normal Scenarios126Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios.133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134	Table 17Requirement for the remote pilot	.81
Table 20 Conclusion. First approach.87Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A.98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 27 Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 29 Assumption Operational Environment111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations.120Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios.133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134	Table 18Requirement for Requirements for ATC	.81
Table 21 Safety objectives TAS level.88Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A98Table 24 Qualitative Safety impacts Eurocae ED78A.98Table 25 Hazard classification and safety objectives relationship.99Table 26 References102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 19Requirement for Requirements maintenance	.81
Table 22 High level comparison between ED-78A and D1.397Table 23 Recommendation ED_78A98Table 24 Qualitative Safety impacts Eurocae ED78A98Table 25 Hazard classification and safety objectives relationship99Table 26 References102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 30 Assumption RPAS112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 20 Conclusion. First approach	.87
Table 23 Recommendation ED_78A	Table 21 Safety objectives TAS level	.88
Table 24 Qualitative Safety impacts Eurocae ED78A98Table 25 Hazard classification and safety objectives relationship99Table 26 References.102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems.110Table 28 Assumption Operational Environment.111Table 29 Assumption Communication.111Table 30 Assumption ATC.112Table 31 Assumption RPAS.112Table 32 Areas of Changes impacted by the RPAS operations.120Table 33 Normal Scenarios.126Table 34 Requirements from Normal Scenarios.127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios.129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios.133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134	Table 22 High level comparison between ED-78A and D1.3	.97
Table 25 Hazard classification and safety objectives relationship99Table 26 References.102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems.110Table 28 Assumption Operational Environment.111Table 29 Assumption Communication.111Table 30 Assumption ATC.112Table 31 Assumption RPAS.112Table 32 Areas of Changes impacted by the RPAS operations.120Table 33 Normal Scenarios.126Table 34 Requirements from Normal Scenarios.127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios.129Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios.134	Table 23 Recommendation ED_78A	.98
Table 26 References102Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 24 Qualitative Safety impacts Eurocae ED78A	.98
Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems110Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure on RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 25 Hazard classification and safety objectives relationship	.99
Table 28 Assumption Operational Environment111Table 29 Assumption Communication111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 26 References	102
Table 29 Assumption Communication111Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems	110
Table 30 Assumption ATC112Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios133Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 28 Assumption Operational Environment	111
Table 31 Assumption RPAS112Table 32 Areas of Changes impacted by the RPAS operations120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS130Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 29 Assumption Communication	111
Table 32 Areas of Changes impacted by the RPAS operations.120Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise Scenarios130Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 30 Assumption ATC	112
Table 33 Normal Scenarios126Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS130Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 31 Assumption RPAS	112
Table 34 Requirements from Normal Scenarios127Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS130Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 32 Areas of Changes impacted by the RPAS operations	120
Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios129Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS130Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios133Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 33 Normal Scenarios	126
Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS130Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios	Table 34 Requirements from Normal Scenarios	127
Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios	Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios	129
Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios134	Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS	130
	Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios	133
Table 39 Loss of AutoFailMS followed of a second failure on RPAS before final approach scenarios	Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios	134
	Table 39 Loss of AutoFailMS followed of a second failure on RPAS before final approach scenarios	137

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1

Page:	16
Classification:	Restricted

Table 40 Requirements from Loss of AutoFailMS followed of a second failure on RPAS before final approach
scenarios
Table 41 of AutoFailMS followed of a second failure on RPAS during final approach scenarios 138
Table 42 Requirements of AutoFailMS followed of a second failure on RPAS during landing scenarios
Table 43 requirements from Loss of AutoFailMS followed of a second failure on RPAS during landing scenarios
Table 44 Spurious detection of a non-existing failure by AutoFailMS scenarios
Table 45 Requirements from spurious detection of a non-existing failure by AutoFailMS scenarios 148
Table 46 Erroneous/Erratic AutoFailMS combined with a second failure on board in cruise scenarios 151
Table 47 Erroneous/Erratic AutoFailMS combined with a second failure on board before final approach
scenarios154
Table 48 Erroneous/Erratic AutoFailMS combined with a second failure on board during final approach
scenarios155
Table 49 Erroneous/Erratic AutoFailMS combined with a second failure on board during landing scenarios156
Table 50 Erroneous/Erratic AutoFailMS combined with a second failure on board during landing scenarios158
Table 51 Safety Requirements from Inadvertent/uncommanded AutoFailMS connection/disconnection all flight
phases159
Table 52 Abnormal scenarios 161
Table 53 Requirements from abnormal scenarios 161
Table 54 Severity matrix as per ER-010 [16] 163
Table 55 Severity allocation to failure scenarios for UAV operations in ER-010 [16] 163
Table 56 Severity matrix as per JARUS [9] 164
Table 57 Quantitative safety objective for CAT as per JARUS [9] 165
Table 58 Safety objective for NSE, MIN, MAJ, HAZ and CAT as per JARUS [9] 165
Table 59 Qualitative Safety objective for NSE, MIN, MAJ, HAZ and CAT as per JARUS [9]

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	17
Issue:	1.1	Classification:	Restricted

This page is intentionally left blank

1 Introduction

1.1 Background

As long as the technology advances, new solutions are proposed for old problems. The efficient and fast transports of goods can now be safely achieved by aircraft without pilot on board; therefore, it is possible to envisage dangerous and risky transport routes without facing the risk of losing a human life. However, this type of aircraft might be expected to fly over populated areas, so it needs to be compliant with rules applied in non-segregated areas. The introduction of remote piloted aircraft in non-segregated areas implies several challenges, in case on an emergency, the old procedures might not be safe enough, it is basic then to define a certification approach that enables the RPAS system and the ATM to provide a common acceptable safety level in all situations.

1.2 Objectives

The main objective of this use Case is to test the D1.3 methodology in Autonomous Failure Management Systems installed on a RPAS. The methodology is tested under two approaches:

First approach: the methodology proposed in ASCOS by D1.3 is applied by applicants (meaning partners acting together) to demonstrate that all the requirements (for the TAS as a whole) are met. In this approach, this Use Case develops a common set of safety objectives and safety requirement for the introduction of an RPAS supported by "AUTOnomous FAILure Management System" (AutoFAilMs) in a non-segregated airspace.

Second approach the methodology proposed in ASCOS by D1.3 can be applied by a stakeholder group1 to gather specifications and supporting material which define the requirements for a change. In this approach this Use Case established a comparison between D1.3 and ED_78A. from current scope (datalink applications) to a broader scope to be applied to operation, processes and services in TAS.

1.3 Approach

This Use Case covers two approaches as presented in previous subchapter.

- First approach is developed all along the Use Case following the steps suggested in D1.3 methodology (stage 1, stage 2...), the conclusion of D1.3 application is summarized in chapter 7.1.
- The second approach is developed in 7.2.

Chapter 2 Stage 1 of D1.3 methodology

¹Stakeholder group: to be understood as a group of industrial and operational partners developing RPAS products and operations (aircraft manufacturers, RPAS operators, ANSPs, maintenance and training organizations, etc)

According to D1.3 methodology [2] stage 1 "*is focused on ensuring that the proposed change*²³ to the TAS is fully *understood*" This chapter presents in first place the general functional architecture of the RPAS proposed (refer to 2.2), in second place the basic concept of the failure management (refer to 2.3), in third place the Autonomous Failure Management System which is the scope of this case study. (Refer to 2.4) and finally the interfaces that are impacted by the introduction of the change (refer to 2.5)

Chapter 3 Stage 2 of D1.3 methodology:

This chapter presents the proposed structure for the argument that the implementation of a failure management system (Autonomous Failure Management System) contributes to an acceptable level of safety for the operation of RPASs, according to the first approach

Chapter 4: Stage 3 of D1.3 methodology

This chapter presents the certification plan; it proposes a certification plan for the Total Aviation System

Chapter 5: Stage 4 and Stage 5 of D1.3 methodology

This chapter defines the safety objectives, requirements and assurance level that is required to meet the requirements defined in stage 2

Chapter6: Stage 6 of D1.3 methodology

This chapter redefines the certification argument in stage 2 by including all the find outs in chapter 4 and chapter 5

Chapter 7. Recommendations for D1.3 and application of D1.3 to ED_78A

Chapter 7 is divided into two subchapters. Subchapter 7.1 that summarizes all the recommendation for D1.3 as a result of the application of D.1.3 to this Use Case, and subchapter 7.2 that presents suggestion of the ED-78A improvement due to the application of D1.3 methodology

2 Stage 1: Define the change

2.1 Introduction

The purpose of this chapter is to describe the change proposed by the Use Case 4.1. The change consists in the Autonomous Failure Management System of a Remote Piloted Aircraft System.

This chapter presents in first place the general functional architecture of the RPAS proposed (refer to 2.2), in second place the basic concepts of the failure management (refer to 2.3), in third place the Autonomous Failure Management System which is the scope of this case study. (Refer to 2.4) and finally the interfaces that are impacted by the introduction of the change (refer to 2.5)

In Appendix A, it has been included a complete list of all additions and/or modifications of the RPAS in comparison with manned aircraft.

2.2 Presentation of the RPAS

The RPAS is conceived as a modification of a civil cargo piloted aircraft similar in size to an A320. RPAS is expected to fly in airspace class A, B and C.

The RPAS presents several modes of autonomy, from autonomous mode to manned mode. In the autonomous mode, the RPAS can adapt its speed and execute flight commands received from ATC, it can as well take decisions relative to failure management or/and to an external events. In this mode the remote pilot is considered as a backup. The remote pilot can, at any moment, revert to manned mode.

In manned mode the remote pilot performs all functions currently allocated to a pilot on board, specific sensors and cameras can be envisaged to replace the physical sensations of a pilot on board. The RPAS is permanently automatically protected by system (flight envelope limitations, protection against stall, overrun...). These protections are already in place in the current aircraft. The level of protection corresponds to the level of the law used by flight controls (normal laws to direct laws).

The "see and avoid" duty performed by the pilot is replaced on the RPAS by a "detect and avoid" function based on specific sensors having capability to detect small, non-cooperative traffic (e.g.: gliders, VLAs), in particular when flying in class B or C airspaces.

The remote pilot communicates with the RPAS thought a C2 link. The C2 is used for transmitting commands from remote pilot station to RPAS (telecommand) and for transmitting data from RPAS to remote pilot station (telemetry). The remote pilot station is similar to current cockpit. For the purpose of Use Case, the performance of the C2 link is sufficient for the continuity and integrity of the function, in the case of erroneous/loss C2 link between the RPAS and the remote pilot station the AutoFailMS will manage the failure.

The RPAS is transparent for the ATC, a priori; the only procedures that are expected to change are relative to a "loss of RPAS control" or "erroneous management of RPAS" situation.

2.3 Approach to Failure Management

On a piloted aircraft, the pilot on board is ultimately responsible for safety during flight, in an RPAS; the remote pilot remains as well responsible for the safety. However, in a RPAS, certain failure such as loss of C2 link or total loss of remote pilot station might lead to a situation on which the RPAS cannot be manned by a pilot. The RPAS needs to be supported by an Autonomous Failure Management System that enables the RPAS to manage the failure modes and provides a level of safety equivalent to manned aircraft. The Autonomous Failure Management System can as well provide flight management and replace the pilot on board in normal conditions, in this situation, the remote pilot remains as a backup.

The role of the remote pilot and the appropriate level of automation for each aircraft function depends on the characteristics of the functions (e.g. the pilot remains responsible or aircraft trajectory, therefore, flight plan modification should be validated by remote pilot) and on the severity and reaction time required after a function failure (e.g. emergency procedures might be totally autonomous at any automation mode).

This chapter presents basic concepts of failure management, it analyses the pilot family procedures and suggests a failure management policy for each family.

To sum up:

- Functions and function failures management without pilot action should be totally autonomous with remote pilot being informed
- Functions and function Failures management leading to pilot action should be automated after pilot validation/confirmation
- At any moment the remote pilot may to revert to manned mode

2.3.1 Failure Management basic concepts

2.3.1.1 Failure detection

In a manned aircraft with on board pilot most of the failures are detected by the aircraft systems and by the pilot through different means of detections (e.g. Flight Warning System, Control Data System ...) however some failures modes are only detectable by pilot on board, for example the physical sensation due to aircraft behavior in reaction to controls on attitude or acceleration/deceleration. In this sense, the pilot can be considered as detection means.

For an RPAS Failure Conditions detected by the systems with actual usual means are transferred to the remote pilot. It is considered that all the data available in the cockpit for an on board pilot are also available for the remote pilot

The failure conditions only detectable by on board pilot require unusual means of detection, the RPAS is supposed to be equipped with:

- New sensors (fire, smoke, vibrations, pressure ...)
- Video camera for remote pilot information

2.3.1.2 Consideration of concept of isolation of failures and Reconfiguration/ diagnosis

On an onboard piloted aircraft, after failure detection, the system isolates it in order to avoid propagation. Depending on the failure, autonomous isolation can occur or isolatation can be performed by pilot on board applying procedures (e.g. stop engine on fire)

In an RPAS, the isolation of a failure is totally autonomous and does not require the validation of the remote pilot except in the following cases:

- Failures Conditions only detected by Remote Pilot.
- Remote Pilot Request (non application or erroneous application of actions & procedure, detection of a spurious Alert ...)

2.3.1.3 Management of the failure

In a normal aircraft, after the failure isolation, the pilot on board decides the proper action: This action can be classified in a family procedure

- EMERGENCY procedure / Warnings requiring immediate action to avoid critical situation or loss of A/C control (e.g. ELEC EMER CONFIG, SMOKE procedure, Engine FIRE)
- Cautions which are not considered as emergency cases requiring pilot action (not necessary immediate) or leading to pilot workload(degradation in law, speed / performance limitations, degradation of functionalities)
- Cautions for awareness (loss of redundancy, speed/performance limitations)
- Normal procedures: procedures established and recommended by the aircraft manufacturer for particular operations which are considered useful to highlight (e.g. Preflight Checks, Take-Off or Approach procedures)

In this Use Case, the RPAS can be managed in several levels of autonomy. In the manned mode, the remote pilot manages all failure conditions; in the total autonomous mode the following approach is proposed:

Emergency and Cautions:

- For emergency procedures, immediate and autonomous application by system of appropriate action / procedure: The failure condition is autonomously managed and remote pilot is considered as a back-up.
- For cautions with actions, autonomous application by system of appropriate action / procedure after validation or confirmation by remote pilot (isolation of failure, automatic reconfiguration) or automatic recovery reconfiguration allowing remote pilot to understand the situation and to take appropriate action if needed
- For cautions without pilot action (only for pilot awareness), autonomous application by system of appropriate action (isolation of failed source, automatic reconfiguration on available source) and

application of the potential speed or performance limitations. The remote pilot has to be informed of the failure and A/C configuration.

Normal procedures

The normal procedures are applied in each flight in normal situation. The normal procedures concern particular operations which are considered during a flight: Preflight checks, TO/ approach procedures, cruise procedures (turbulences) and procedures associated to different A/C systems (Auto flight system, Navigation, Fuel, Ice and Rain protection). Note that basic airmanship can be also considered as a normal procedure. For an RPAS, normal procedures can be managed as following:

- Autonomous management of procedures (specific checks, TO and approach procedures) with validation or confirmation by remote pilot to the correct application of procedure (The remote pilot is responsible for the aircraft trajectory and is informed about the trajectory updates/modifications. In any case the pilot can take the control of the aircraft and responds to trajectory updates/modification. In an autonomous mode the remote pilot validates the trajectory modifications.)
- Basic airmanship and specific procedures will be manually managed (permanent monitoring of data, flight conditions, specific check in TO / approach, ...)

Unexpected event

By definition, an unexpected event cannot be anticipated and by consequence cannot be automatically managed. However, it can be considered that such event can lead to erroneous behavior of A/C or can be detected by an A/C system or other means (remote pilot, ATM).

For an RPAS, unexpected event can be managed as following:

- Possible detection of the unexpected event by an A/C system with usual means or unusual means (possibility to introduce in RPAS new means of detection (specific sensors, camera videos..) or possible detection by remote pilot, ATM or others means (traffic control, visual control, erroneous A/C behavior ...)
- If detected by an A/C system, unexpected event can be automatically managed and remote pilot will be considered as a back-up: autonomous recovery reconfiguration allowing remote pilot to understand the situation and to take appropriate action if needed.
- If not detected by an A/C system, unexpected event will be manually managed by remote pilot (possibility to command an autonomous recovery reconfiguration allowing remote pilot to take time to understand the situation and to take appropriate action if needed)

2.4 Description of the Autonomous Failure Management System

The Autonomous Failure Management system function is to detect and react to failures of the RPAS and to respond autonomously to these failures as far as possible (using reconfiguration of the systems on the aircraft where appropriate), with the intention to remain on the original intended flight path if possible.

From the point of view of aircraft architecture the AutoFailMS is divided into two sub systems, the Failure Management sub-System (FailMS) and the Failure Reconfiguration sub-System (FailRS). The main difference among them lies in the logic implemented.

The FailMS considers the continuous monitoring of system status and the decision making process (prioritization) usually performed by the pilot during the course of the flight. The FailMS assesses the aircraft system technical status and authorize reconfiguration of aircraft systems in abnormal situation according to prioritization rules implemented on FailMS logics.

The FailRMS is in charge on failures and reconfiguration associated to one single system and it replaces the pilot on board in all those procedures that can be automated internally to one single system (e.g. in an aircraft equipped with several RA, pilot inhibits erroneous RA data and continues flying with remaining RA). The FailRMS, itself, is implemented internally to each system and it can be considered as an evolution of the current failure management already existing in the current systems. The FailRS collects the data of system status and transmits them to the FailMS.

Failure Management System

The failure management systems considers the continuous monitoring and decision making process usually performed by the pilot during the course of the flight: Go Around decision, monitoring of adherence to flight plan / to trajectory constraints, decision to reject take-off, fire procedures, conduct of ditching / crash-landing, etc.

This entails that the system should handle autonomously all the actions that are normally performed by a pilot, as set per the FCOM Normal and Abnormal procedures as example:

- Decision to use the reverse thrust
- Decision of diverting to an emergency site.
- Fuel management/monitoring.
- Flight performance optimization (speed / altitude)
- Prioritization in case of conflict of reconfiguration between different systems.
- Automation level (pilot can chose the automation level delegated to the airborne systems)

Specifically this entails that the FailMS could handle abnormal procedures involving multiple aircraft systems as well as the monitoring of the FailRMS functionality (see below).

Failure reconfiguration System

The management of failures reconfiguration has to be distributed primarily between the different aircraft systems. Each aircraft system shall be capable to handle as planned its own reconfiguration in case of failure. This capacity shall be implemented consistently in each of the aircraft systems under the overall supervision of the FailMS (above) in order to prevent that incompatible or conflicting reconfigurations are applied simultaneously on different systems and to set priorities in case of conflicting reconfigurations. FailRMS will handle:

- Reconfiguration on failure in case failure reconfiguration that does not require a prioritization of the recovery actions amongst the different systems.
- Abnormal procedures applying on one system.

2.5 Interfaces with other TAS stakeholders

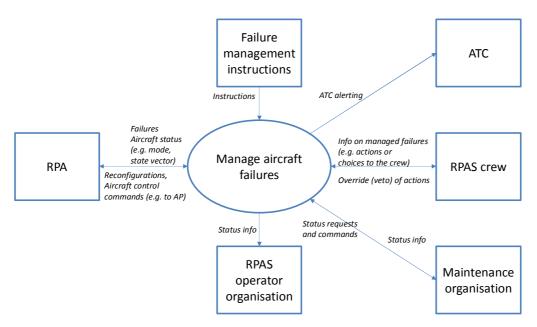
In developing the AutoFailMS it becomes apparent that changes are introduced not only to the RPAS, but also to other domains involved in the specification, development, production, operation and maintenance of the AutoFailMS. The changes are investigated by looking at the interfaces the AutoFailMS has with these domains that have been made visible in Figure 1

The AutoFailMS essentially replaces the pilot in the management of failures on-board the RPA. In the case when one or more failures occur in the aircraft, the pilot has to follow the failure management *instructions*. In manned aircraft the Normal and Abnormal procedures are usually documented by the aircraft manufacturer in the Flight Crew Operation Manual (FCOM) and/or the Aircraft Flight Manual (AFM).

The assumption made in this case study is that the aircraft failure management instructions for the pilot can all be automated for execution by the AutoFailMS.

The AutoFailMS deals with the failures that comes from the RPA systems (box "aircraft" in Figure 1). These *failures* are detected by the AutoFailMS. In order to handle the failure properly (execute the appropriate procedure) information on the *aircraft status* is a required input for the AutoFailMS. When AutoFailMS executes such a procedure, the AutoFailMS must be able to send commands to systems in the aircraft (e.g. systems that must be reconfigured).

While the AutoFailMS is specified to be able to manage the failures with a great deal of autonomy, it is still important that the RPAS remote pilot is kept aware of the status of failure management in the RPA by the AutoFailMS. The remote pilot must receive *information* on the failures that have been managed. Furthermore, it could be the case the remote pilot still needs to be involved in the failure management process, e.g. in case the AutoFailMS design allows for crew actions for overriding or vetoing of AutoFailMS failure management actions.


The RPAS is interfaced with the operator organisation. It is important that the RPAS operator organisation is kept aware of the *status* of failure management in the RPA by the AutoFailMS.

The RPAS is also interfaced with maintenance by the maintenance organisation. An interface must exist that allows for exchange of data for maintenance purposes. E.g. the maintenance organisation could *request* the

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	26
Issue:	1.1	Classification:	Restricted

AutoFailMS to report on the *health status* of the RPA systems (this can be considered as a complement to the BITE system)

When the AutoFailMS executes failure management procedures, this may have an impact on the operation of the RPA. Air Traffic Control organisation must be *alerted* on the failure situation of the RPA when this has impact on the execution of the flight plan (e.g. in the case of a lost C2 link when a contingency procedure is executed automatically by the RPA). The RPA is a type of aircraft that is – in some aspects – different from manned aircraft, that it is very likely that it will lead to changes in ATC for handling RPAS traffic.

Figure 1 AutoFailMS concept

The main interfaces impacted by the introduction of AutoFailMS are the ATC and the pilot described below,

2.5.1 Air Traffic Control

This section describes the perspective of Air Traffic Control (ATC) in the definition of the change. Air Traffic Control is (ATC) is one of the services provided by an Air Navigation Service Provider (ANSP) as part of the bigger scope of ATM.

The AutoFailMS is a subsystem of the RPAS and (as can be seen in Appendix A) it has a functional interface with ATC. The introduction of the AutoFailMS is part of a larger change, i.e. the change from manned cargo aircraft to unmanned cargo aircraft, which is a situation that does not yet exist today. Therefore we need to make a number of assumptions on the involvement of ATC in this situation, for which we need an analysis on RPAS-ATC level.

For this analysis the main inputs are the considerations from the CANSO report on RPAS [12], which identifies the issues that need to be addressed to safely achieve greater RPAS integration in the future.

ASCOS — Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of ASCOS partners

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	27
Issue:	1.1	Classification:	Restricted

Air traffic management integration of RPAS will be safely achieved when routine access by RPAS operations into non-segregated airspace, is transparent to ANSPs. Therefore, the RPAS remote pilot will be required to respond to ATC guidance or requests for information, and comply with any ATC instruction (e.g. fly headings, altitudes, Navaids and Waypoints and comply with standard IFR approach and departure procedures), in the same way and within the same timeframe as the pilot of a manned aircraft.

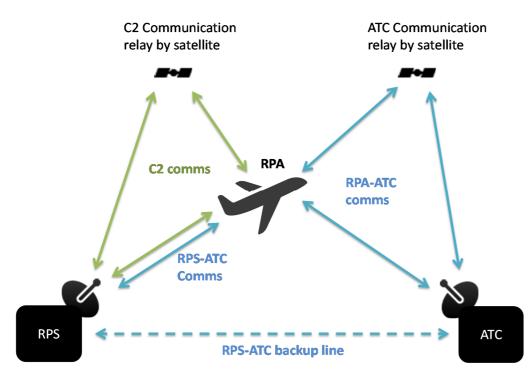


Figure 2 RPAS and ATC communication

Given the RPAS and ATC communication diagram of Figure 2 a number of assumptions on the design of the RPAS system its operation in relation with Air Traffic Control are given below:

- Similarly as with manned traffic Air Traffic Controllers have contact with the RPAS by means of radio communication or by digital data link (VHF terrestrial or via satellite communication).
- The RPA serves as a relay for the voice and data communication between the Air Traffic Controller and the remote pilot.
- In case of loss of communication between RPA and ATC, the ATC could communicate directly with the remote pilot via the backup line.
- As in normal conditions the RPA performs the flight automatically, it is assumed that the RPA is able to perform standard communication with ATC (follow up clearances, respond to requests, etc.). The remote pilot is responsible for the proper execution of the filed flight plan and is monitoring.
- In non-normal conditions the pilot takes over the control of the RPA and communicates with ATC.

Currently, the seamless integration of RPAS into non-segregated airspace has not yet been established. CANSO report [12] lists aspects where special handling of RPAS by ANSPs is required. This list is repeated below, together with any assumptions/effects for this specific case study.

ATC aspects	Description [12]	Assumptions for ASCOS study
of RPAS		
ATC	Ideally, RPAS would require no special handling	It is assumed that ATC phraseology has been
phraseology	from ATC and therefore would not require any	established, including those for abnormal
	additional ATC phraseology. However, the RPAS	and emergency situations.
	programme has not matured enough to be	
	considered as normal ATC operations,	
	especially for contingency operations because of the unique nature of individual RPAS. There	
	is currently no approved, standard RPAS-	
	related ATC phraseology and this will have to	
	be developed and agreed prior to operations.	
RC2	If the RC2 datalink is operating via a satellite,	It is assumed that the RPAS operates both
Datalink	there may be latency in the response to ATCO	within and beyond RLOS. The latency
	instructions. If the RPAS C2 datalink is operated	introduced by the C2 datalink may
	by Radio Line of Sight (RLOS), then the RPA may	contribute to potential hazards.
	have minimum flight altitudes below which it	·
	cannot operate safely.	
In-Flight	The RPAS may also have different in-flight	It is assumed that RPAS performs cargo flight
Characterist	characteristics to manned aircraft, such as a	from A to B, similar to current cargo planes.
ics	slower than expected airspeed, a slow rate of	
	climb or a preference to spiral climb rather	
	than an en-route climb. The flight profile of an	
	RPAS may also be different to manned aircraft,	
	which normally route from A to B via C,	
	whereas the RPAS may take off and land at the	
	same airport having conducted its mission, that	
	is, from A to A, having orbited at C. Therefore,	
	it will be important for ATC to establish	
	whether the RPAS will be transiting through a	
	sector, or remaining within a sector 'on task'	
Flight Data	either flying a race track or orbit. FDP systems may have difficulty processing	It is assumed that necessary FDP system
Processing	RPAS flight plans, due to elements such as the	modifications have been implemented to
(FDP)	flight profile, duration of the flight, inability to	allow for RPAS specific flight plans.
systems	specify 'zero' persons on board and alerting	anow for the to specific inght pluis.
.,	requirements. For example, the RPA may wish	
	to complete a spiral climb from the aerodrome	
	of departure or may remain airborne for more	
	than 24 hours, both scenarios that would be	
	difficult to define in a standard flight plan.	

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1

Page: Classification: 29 Restricted

ATC aspects	Description [12]	Assumptions for ASCOS study
of RPAS Alerting	Alerting Services are provided for all aircraft	It is assumed that necessary alerting services
Services	provided with air traffic control service, or that have filed a flight plan, or are believed to be the subject of unlawful interference. Current ICAO regulations do not differentiate between manned and unmanned aircraft; however some States are reviewing and considering adapting the application of alerting services for RPAS.	are in place to allow for RPAs that are under air traffic control services.
Utilisation of existing IFR Procedures	Most current RPAS are not fitted with standard, certificated avionics. This means that they cannot utilize existing civil published IFR approach procedures, e.g. ILS, VOR, DME or RNAV, or conduct a standard departure or fly en route procedures, including RVSM.	It is assumed that the RPA is fitted with certificated CNS/ATM equipment that allows for the civil published IFR approach procedures.
Detect and Avoid, Collision Avoidance	In manned aviation it is the pilot-in-command's responsibility to detect and avoid potential collisions and other hazards. Similar requirement exists for RPAS, but there are currently no certified DAA systems available.	It is assumed that the RPAS includes a certificated Detect and Avoid system that allows for flight within non-segregated airspace. As in manned aviation ATC is responsible for separation assurance, while the RPAS remote pilot is responsible to avoid collisions.
Contingency and Emergency Operation Procedures	RPAS emergency procedures should mirror those for manned aircraft as far as practicable. However, because of their unique attributes (mainly, although not exclusively, because the pilot is not on-board), in some cases new procedures will have to be developed by ANSPs to accommodate RPAS, taking into account unique RPAS failure modes such as lost C2 link.	It is assumed that specific Contingency and Emergency Operation Procedures have been established for the RPAS (as part of the operational certification). Basically the RPA behaves in a predictable manner. ATC is fully informed and trained to apply these procedures. E.g. in case of loss of C2, the procedure could involve alerting the ATC and airspace users of the situation (squawk code), the use of a backup line for RPS to ATC communications, predetermined flight or holding patterns and predefined flight completion options (alternate landing sites or in rare cases, terminate the flight by controlled flight into terrain (CFIT) at a pre- determined point That is known to be unpopulated).

Table 1 ASCOS assumptions for RPA related to ATC

The table above indicates that a number of systems are assumed to be in place to enable the RPAS to operate as a cargo aircraft under Air Traffic Control in non-segregated airspace. The AutoFailMS is designed to manage the failures of these systems and to alert ATC on the status of this failure management. Examples are the failures or loss of the C2 link, failures of the Detect and Avoid systems. With this knowledge ATC can then take appropriate actions.

2.5.2 Remote pilot

The RPAS presents several modes of autonomy, in the manned mode the pilot performs all actions as per today, in the autonomous mode the RPAS flights autonomously while remote pilot remains as a backup. However, even in the autonomous mode the trajectory is owned by the remote pilot who knows which are the limits of the aircraft for the current fuel, weight and balance conditions. The remote pilot needs to agree on trajectory or speed modifications requested by the ATC. Then, the aircraft updates the trajectory and the remote pilot informs the ATC. Handling of ATCo instructions of immediate execution (e.g.: Go Around) may require specific arrangement between ATC and RPAS operational organizations

The remote pilot can, at any moment, revert to manned mode. In manned mode the remote pilot performs all functions currently allocated to a pilot on board, specific sensors and cameras can be envisaged to replace the physical sensations of a pilot on board. The cockpit can be enriched with data from aircraft around in a better way than normally

In case of failure if the aircraft is in manned mode the pilot will need to execute action as per today, in the autonomous mode the AutoFailMS systems manage the aircraft, the pilot is informed according to the policy: described in 2.3.1.3 To remind:

- Functions and functions failure without pilot action can be totally autonomous
- Functions and function Failure leading to pilot action can be
 - Automated after pilot validation/confirmation
 - Automated after pilot being informed (pilot can any moment revert to manned mode)

For more details refer to 2.3

2.5.3 Maintenance

Maintenance activities are not expected to be largely impacted. The interface between the RAPS and the maintenance team will be defined under the same principles that current manned aircraft.

2.5.4 RPAS operation organization

This is the company that owns and operates the RPAS; this interface plays a major role on stage 4 and 5 that are not addressed in this analysis.

2.6 Conclusion

Operational description of RPAS operations assisted by AutoFailMS and environmental assumptions:

Item	Description
The overall goal of the change.	The introduction of a civil cargo RPAS in non segregated airspace class A, B and C. The RPAS is supported by an Automatic Failure
	Management System.

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1 Page: Classification: 31 Restricted

Item	Description
Definition of the change to be made.	The function of the Autonomous Failure Management System (AutoFailMS) is to detect and react to failures of the RPAS and to respond automatically to these failures as far as possible (using reconfiguration of the systems on the aircraft where appropriate), with the intention to remain on the original intended flight path if possible. Where failures make it infeasible to complete the flight with a safe landing at the original intended destination, the Failure Management System will divert the aircraft to the (most appropriate) predefined alternative landing site. In the event of a failure which cannot be handled by the Failure Management System, it will hand control over to the remote pilot supported by sufficient diagnostic information to allow the remote pilot to make an informed decision regarding the continuation of the flight. The Failure Management System also provides full diagnostic information to the remote pilot, including all the information which would normally be available on the aircraft flight deck, supplemented by additional context information which would normally be detectable by the pilot through his presence in the cockpit. The argument presented in this document applies to the Autonomous Failure Management System.
Definition of the time frame for the actual implementation of the change (target year)	The timeframe could be 2025+, as this is roughly in line with integration of RPAS IFR flights in Europe, as defined in the EURoadmap for the integration of civil Remotely-Piloted Aircraft Systems into the European Aviation System RPAS (European RPAS Steering Group, June 2013).
Areas of Change that have an impact on the modification	Please refer to Appendix C.
Part(s) of the system will be changed	Main stakeholders impacted are remote pilot and ATC, maintenance activities are briefly described. Aircraft operator is considered out of the scope of this Use Case. Refer to 2.5
Organisations are involved in making the change	Aircraft manufacturers (DOA, POA) Maintenance organisations Aviation Authorities (EASA, NAAs) Standardisation groups (Eurocae, RTCA, SAE), Air Navigation Service Providers (national and Eurocontrol), Airports, Airlines, Training organisations
How the external environment may be affected by the change	Introduction of an RPAS should be transparent for the ATC. See 2.4
Initial argument architecture	RPAS operations assisted by AutoFailMS must keep the same level of safety as manned aircraft operators.
Requirements (including safety requirements) the change needs to fulfill	The introduction of the RPAS must achieve a level of safety which is no worse than that achieved in equivalent manned operations

Table 2 ASCOS stage 1 conclusions

Note that the stage 1 has required several updates to provide a description suitable for all stakeholders. Refer to Rec_04

ASCOS — Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of ASCOS partners

3 Stage 2: Define the certification argument

3.1 Introduction

The argument structure proposed for this case study is developed from the generic argument presented in D1.3 [1] section 3.2. For the purposes of the case study, only claims 1 and 2 of the argument will be developed in detail. The other claims will be developed only in respect of dependencies on and interface to other domains.

We also need to decide **who** should apply the D1.3 approach. We have assumed that the approach is applied in two phases as follows. (This is captured as A0-2 in the argument.)

- In the first approach, the approach proposed in ASCOS by D1.3 is applied by applicants (meaning partners acting together) to demonstrate that all the requirements (for the TAS as a whole) are met. This demonstration is supported by the individual demonstrations of each applicant, these individual demonstrations are based on the approach proposed in ASCOS by D1.3 for the ATM and on ARPs/EUROCAE safety standards for the certification of RPAS aircraft and for its operation.(AMC-RPAS.1309_Issue-1 and ARP4754A/ED79A). For more detail of the task of this groups refer to WP 3.5 TESG group. This first approach is developed in sections 2, 3, 4, and 5,.
- In the second approach, the approach is applied by a stakeholder group² to gather specifications and supporting material which define the requirements for an Autonomous Failure Management System installed on an RPAS. (This may involve developing new specifications where functions and / or interfaces are not covered in existing specifications., refer to paragraphs 3.5.2 and 3.5.3) The overall argument and specifications will be proposed to the Authorities for agreement. The approach will take account of existing specifications, especially for the failure management system itself, while the D1.3 approach will be used to guide development at the TAS level and for interface with ATM.
- This Use Group has identified that the ED 78A/DO 264, follows a similar approach to D1.3. These ED_78A guidelines have been developed by a stakeholder group. This document presents a multi-stakeholder agreement (by prescribing processes such as Operational Environment Definition, Operational Safety and Performance Assessments and Interoperability Assessment) on the inter stakeholder level. However, it was also noted that the ED78A is not sufficient for our WP4.1 case, as proper feedback loops from the different stakeholder domains and the operational phase are not sufficiently included in the ED78A method. This Use Group has established a comparison between D1.3 and ED_78A approach to identify main areas of development of ED78A.

²Stakeholder group: to be understood as a group of industrial and operational partners developing RPAS products and operations (aircraft manufacturers, RPAS operators, ANSPs, maintenance and training organizations, etc)

This split in application of the D1.3 methodology raises the issue of who "owns" the argument – i.e. who is the argument $architect^3$? Although this is not resolved in the case study, it is a key question for full application of the approach. This Use Case suggests that TESG (TAS Engineering and Safety Group refer to WP 3.5 chapter 7) as a top architect body (TAS Engineering and Safety Group: TESG).

3.2 Claim 0: The failure management system (AutoFailMS) contributes to acceptably safe RPAS operations

Figure 3 shows the adaptation of the top level of the generic argument (see D1.3 [1]section 3.2) to this case study.

The claim is that the Autonomous Failure Management system adequately supports safe RPAS operations. For the purpose of this case study it is decided that it is up to the certification authorities (EASA, CAA, etc) to define the proper level of safety for RPAS operations.

For the purpose of this Safety Case it is agreed that the proper level of safety for RPAS operations means "that introduction of the RPAS must achieve a level of safety which is no worse than that achieved in equivalent manned operations"

Note the following points.

- The claim covers the lifecycle of the change i.e. it covers specification, design and implementation of the AutoFailMS for RPAS; it also covers transition into operation and monitoring while in operation. Each of these elements is covered in a separate subclaim.
- We do <u>not</u> claim that RPAS operations <u>as a whole</u> are acceptably safe we are only considering how the Autonomous Failure Management System contributes to the safety of the operation of the RPAS. To make a claim for RPAS operations as a whole, we need to consider significant areas outside the scope of the case study (i.e. the normal operation of an RPAS, including the need for a Detect and Avoid function);
- We will consider both the positive and negative effects of the Autonomous Failure Management System on the safety of the RPAS – i.e. we consider how the Autonomous Failure Management System benefits the RPAS by "rescuing" it from failures of other systems, as well as how failure of the Autonomous Failure Management System itself may threaten the RPAS (and the wider TAS).

³See Error! Reference source not found. section 2.2.

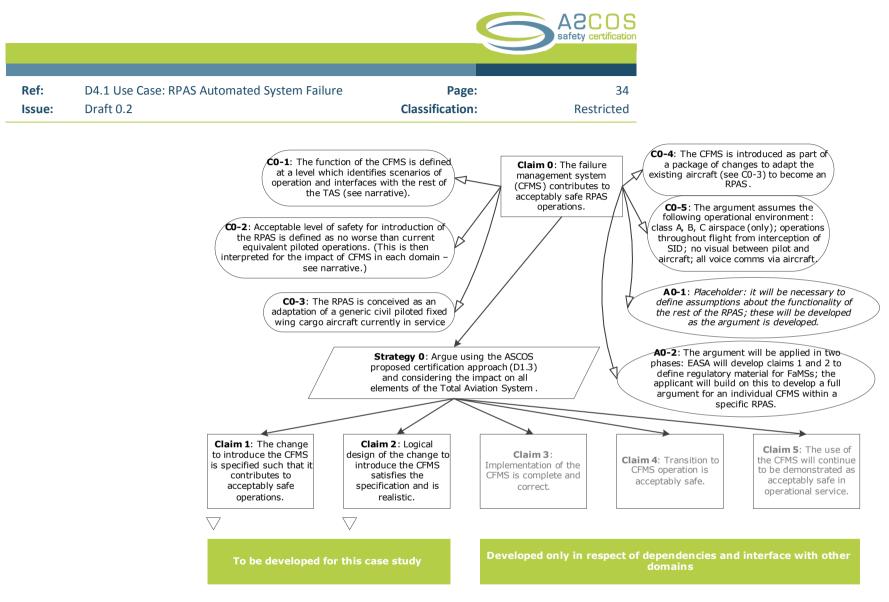


Figure 3 Top Level Argument Structure (Claim 0)

Grant Agreement No. 314299

We define items of *context*, to add detail to the claim being made. These items of context are defined further in the following sections.

- **C0-1** provides(a pointer to) the definition, at an abstract functional level, of the operation of the Autonomous Failure Management System
- **C0-2** defines the level of safety which needs to be achieved by the introduction of the Autonomous Failure Management System.
- **C0-3** identifies that the RPAS is conceived as an adaptation of an existing civil piloted fixed wing cargo aircraft.
- **C0-4** identifies that the Autonomous Failure Management System will be introduced as part of a package of changes (to include provision of a Sense and Avoid function) to adapt the existing aircraft (as identified in C0-3) to become an RPAS.
- **C0-5** defines the operational environment to which the safety argument applies.

In addition, we introduce the following assumptions:

- a (placeholder) assumption (A0-1) to note that we will need to make a significant number of assumptions about the interface between the Autonomous Failure Management System the other RPAS systems. Refer to 3.2.4, because the proposal is for a change to a hypothetical system (i.e. there is no RPAS of this type currently in operation).
- the assumption (A0-2) that the argument is applied in two phases, as discussed in section 3 above.

The top level claim (Claim 0) is then decomposed into subclaims (Claims 1 - 5), each making a "smaller" claim about the Autonomous Failure Management System and its introduction as part of the RPAS system. The premise of the argument is that, when taken together, the subclaims are sufficient to demonstrate that the top level claim has been achieved. **Strategy 0** documents the approach which is taken in subdividing the claim – i.e. the approach proposed in ASCOSD1.3 [1]– which considers specification, design, implementation, transition into operation and operational service. The claims are explained in later sections of this document.

3.2.1 Context C0-1: Definition of operations of the Autonomous Failure Management System

In order to undertake the safety analysis, we need a high level, abstract definition of the operation of the Autonomous Failure Management System and its effect on the other parts of the TAS.

The initial description is made up from:

• a functional description of the operation – see section 2 define the change

- an expansion of this functional description in the form of operational scenarios see section 3.2.1.1
- the operational environment in which the Autonomous Failure Management System is to operate see section 3.2.5

3.2.1.1 Operational Scenarios

The analysis within the argument is based on scenarios of operation of the Autonomous Failure Management System and the associated description of the sequence of events in each scenario.

Scenarios describe the operation of the Autonomous Failure Management System, this case the scenarios describe the operation of the Autonomous Failure Management System *as seen from the outside* showing the effect on the rest of the total aviation system (TAS).

Scenarios are divided into three types:

- normal scenarios describe the operation of the Autonomous Failure Management System in an "ideal" environment: i.e. in normal conditions of the external system, where the Autonomous Failure Management System itself has not failed in any way.
- abnormal scenarios where the Autonomous Failure Management System is operating outside its usual envelope (e.g. this could be due to (inter alia) incorrect maintenance, incorrect actions by the pilot, severe weather conditions, busy traffic conditions) but the failure management system itself has not failed in any way;
- (self) failure⁴ scenarios where the Autonomous Failure Management System itself has failed. Note: at this stage of the analysis we can only consider the consequence of these failures; the causes are considered later.

3.2.1.1.1 Normal scenarios

Analysis of the functional description in "section 2 defines the change reveals the following *normal* operational scenarios:

Ident	Normal Scenarios. AutoFailMS detects a failure and applies recovery action			
	Normal failure-free operation, no intervention required from AutoFailMS (intervention from the AutoFailMS MS would constitute a failure of the AutoFailMS) although it will provide information to			
NS-1	the remote pilot			

⁴Note, in this context, *(self)failure* refers to failure of the AutoFailMS to function as specified, not to an (aircraft)failure leading to the requirement for an action from the AutoFailMS.

Page: Classification: ASC

Ident	Normal Scenarios. AutoFailMS detects a failure and applies recovery action			
NS-2	Successful reconfiguration of the aircraft systems (by the AutoFailMS MS) following a failure, such that the mission continues according to the flight plan, with no deviation from intended flight path;			
NS-3	Successful reconfiguration of the aircraft systems (by the AutoFailMS MS) following a failure before final approach, such that the mission continues according to the flight plan, although with initial deviation (recovered) from intended flight path; <i>The distinction is made between this scenario and N#2 due to the potential for impact on ATM and other aircraft resulting from the deviation from the intended flight path.</i>			
NS-4	Failure during final approach such that the aircraft must execute a missed approach, followed by successful reconfiguration of the aircraft systems (by the AutoFailMS MS) such that the aircraft can return to land at the intended landing site.			
NS-5	Non recoverable failure (but where sufficient control remains to allow successful diversion) before final approach causing diversion (by the AutoFailMS MS) to alternative landing / recovery site;			
NS-6	Non recoverable failure (but where sufficient control remains to allow successful diversion) during final approach causing a missed approach followed by diversion (by the AutoFailMS MS) to alternative landing / recovery site;			
NS-7	Transfer of control to remote pilot following a failure for which the AutoFailMS is unable to determine / execute a safe recovery action, followed by successful recovery by the remote pilot;			
NS-8	Non recoverable failure during landing (by the AutoFailMS)			
NS-9	Non recoverable failure (but where sufficient control remains to allow successful diversion) during take off			

Table 3 Normal scenarios

3.2.1.1.2 Failure scenarios

Analysis of the functional description in "section 2 define the change" reveals the *failure* operational scenarios. These scenarios present a more detailed level than what is expected according to D1.3 [1]. A compromise has been found between two approaches.

• The aircraft and aircraft systems need to be compliant with current regulation and JARUS [9]. The ARPS 4754A/ED79A [13] is the proper means to support the regulation requirements. Therefore, it seems reasonable to write the scenarios at the level of current SSAs for manned aircraft already based on ARP4754A/ED79A.

• A stated on the stage 1, the RPAS operations are designed in such a way that in normal situation, the RPAS will be transparent for the ATM. Consequently, it is in the failure modes where the impact on the stakeholders is going to be analysed. Therefore it seems reasonable to write the scenarios related to the Autonomous Failure Management System at the level of an aircraft FHA that can be interfaced with the ATM.

The scenario for the failure modes presents therefore a level between the expected level of similar SSAs in current manned aircraft CS-25 and the expected level of an aircraft FHA. Refer to Rec_07 to discussion about the scenario levels

a) <u>Failure of AutoFailMS without a second failure in the RPAS</u>

Second failure is defined as any aircraft failure after the failure of the AutoFailMS

Ident	Failure of AutoFailMS without a second failure in the RPAS	
FS-01.01-A	Loss of the AutoFailMS without second failure	
FS-01.01-B	Undetected loss of the AutoFailMS without second failure	
FS-01.02-A	Detected erroneous AutoFailMS without second failure	
FS-01.02-B	Undetected erroneous AutoFailMS without second failure	
FS-01.03-A	Detected intermittent AutoFailMS without second failure	
FS-01.03-B	Non-detected intermittent AutoFailMS without second failure	

Table 4 Loss of AutoFailMS without a second failure in the RPAS scenarios

b) Failure of AutoFailMS with a second failure in the RPAS

	i.	Loss of AutoFailMS
--	----	--------------------

Ident	Loss of AutoFailMS with a second failure in the RPAS	Flight phase	Recovery of second failure mode.
FS-02.01-A	Detected loss of the AutoFailMS combined with a second failure on board	in cruise	The remote pilot can control the RPAS
FS02.01-B	Detected loss of the AutoFailMS combined with a failure on board in cruise		The remote pilot cannot control the RPAS
FS02.01-C	Undetected loss of the AutoFailMS combined with a failure on board in cru		The remote pilot can control the RPAS
FS-02.01-D	Undetected loss of the AutoFailMS combined with a failure on board	in cruise	The remote pilot cannot control the RPAS
FS-02.02-A	Detected loss of the AutoFailMS combined with a failure	Before final approach	The remote pilot can control the RPAS
FS-02.02-B	Detected loss of the AutoFailMS combined with a failure on board	Before final approach	The remote pilot cannot control the RPAS
FS.02.02-C	Undetected loss of the AutoFailMS combined with a failure on board	Before final approach	The remote pilot can control the RPAS

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

Ref: Issue:

1.1

ASCOS_WP4_APSYS_D4.1

Page: Classification:

39 Restricted

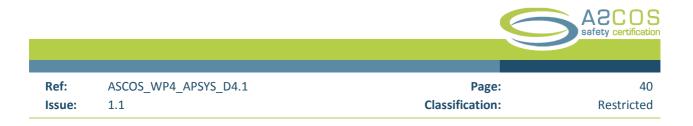

Ident	Loss of AutoFailMS with a second failure in the RPAS	Flight phase	Recovery of second failure mode.
FS-02.02-D	Undetected loss of the AutoFailMS combined with a failure on board	Before final approach	The remote pilot cannot control the RPAS
FS-02.03-A	Detected loss of the AutoFailMS combined with a failure	During final approach	The remote pilot can control the RPAS
FS-02.03-B	Detected loss of the AutoFailMS combined with a failure on board	During final approach	The remote pilot cannot control the RPAS
FS-02.03-C	Undetected loss of the AutoFailMS combined with a failure on board		The remote pilot can control the RPAS
FS-02.03-D	Undetected loss of the AutoFailMS combined with a failure on board		The remote pilot cannot control the RPAS
FS02.04-A	Detected loss of the AutoFailMS combined with a FS02.04-A failure		The remote pilot can control the RPAS
FS-02.04-B	Detected loss of the AutoFailMS combined with a failure on board		The remote pilot cannot control the RPAS
FS-02.04-C	Undetected loss of the AutoFailMS combined with a failure on board	During landing	The remote pilot can control the RPAS
FS-02.04-D	Undetected loss of the AutoFailMS combined with a failure on board	During landing	The remote pilot cannot control the RPAS

Table 5 Loss of AutoFailMS with a second failure in the RPAS scenarios

ii. Spurious failure detection

			Recovery of second failure
Ident	Spurious failure detection	Flight phase	mode.
FS-03.01-A	-A Detection of a non-existing failure In cru		The remote pilot can control the RPAS
FS-03,01-B	Detection of a non-existing failure		The remote pilot cannot control the RPAS
FS-03.02-A	Detection of a non-existing failure	Before final approach	The remote pilot can control the RPAS
FS-03.02-B	Detection of a non-existing failure	Before final approach	The remote pilot cannot control the RPAS
FS-03.03-A	Detection of a non-existing failure	During final approach	The remote pilot can control the RPAS
FS-03.03-B	Detection of a non-existing failure	During final approach	The remote pilot cannot control the RPAS
FS-03.04-A	Detection of a non-existing failure	Landing	The remote pilot can control the RPAS
FS-03.04-B	Detection of a non-existing failure	Landing	The remote pilot cannot control the RPAS

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

Table 6 Spurious AutoFailMS scenarios

iii. <u>Erroneous/erratic AutoFailMS</u>

Ident	Erroneous/Erratic AutoFailMS	Flight phase	Recovery of second failure mode.
FS-04.01-A	Detected erroneous/erratic AutoFailMS combined with a second failure on board	In cruise	The remote pilot can control the RPAS
FS-04.01-B	Detected erroneous/erratic AutoFailMS combined with a failure on board in cruise	In cruise	The remote pilot cannot control the RPAS
FS-04.01-C	Undetected erroneous/erratic AutoFailMS combined with a failure on board	In cruise	The remote pilot can control the RPAS
FS-04.01-D	Undetected erroneous/erratic AutoFailMS combined with a failure on board	In cruise	The remote pilot cannot control the RPAS
FS-04.02-A	Detected erroneous/erratic AutoFailMS combined with a second failure on board	Before final approach	The remote pilot can control the RPAS
FS-04.02-B	Detected erroneous/erratic AutoFailMS combined with a failure on board in cruise	Before final approach	The remote pilot cannot control the RPAS
FS-04.02-C	-04.02-C Undetected erroneous/erratic AutoFailMS combined with a failure on board		The remote pilot can control the RPAS
FS-04.02-D	Undetected erroneous/erratic AutoFailMS combined with a failure on board	Before final approach	The remote pilot cannot control the RPAS
FS-04.03-A	Detected erroneous/erratic AutoFailMS combined with a second failure on board	During final approach	The remote pilot can control the RPAS
FS-04.03-B	Detected erroneous/erratic AutoFailMS combined with a failure on board in cruise	During final approach	The remote pilot cannot control the RPAS
FS-04.03-C	Undetected erroneous/erratic AutoFailMS combined with a failure on board	During final approach	The remote pilot can control the RPAS
FS-04.03-D	Undetected erroneous/erratic AutoFailMS combined 04.03-D with a failure on board		The remote pilot cannot control the RPAS
FS-04.04-A	Detected erroneous/erratic AutoFailMS combined 4.04-A with a second failure on board		The remote pilot can control the RPAS
FS-04.04-B	Detected erroneous/erratic AutoFailMS combined with a failure on board in cruise	During landing	The remote pilot cannot control the RPAS
FS-04.04-C	Undetected erroneous/erratic AutoFailMS combined with a failure on board	During landing	The remote pilot can control the RPAS
FS-04.04-D	Undetected erroneous/erratic AutoFailMS combined with a failure on board	During landing	The remote pilot cannot control the RPAS

Table 7 Erroneous AutoFailMS scenarios

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	41
Issue:	1.1	Classification:	Restricted

iv. Intermittent AutoFailMS connection/disconnection.

Ident	Intermittent AutoFailMS connection/disconnection	Flight phase
FS-05.01-A	Detected intermittent AutoFailMS connection/disconnection.	In cruise
FS-0501-B	Undetected intermittent AutoFailMS connection/disconnection.	In cruise
FS-05.02-A	Detected intermittent AutoFailMS connection/disconnection.	Before final approach
FS-05.02-B	Undetected intermittent AutoFailMS connection/disconnection.	Before final approach
FS-05.03-A	Detected intermittent AutoFailMS connection/disconnection.	During final approach
FS-05,03-B	Undetected intermittent AutoFailMS connection/disconnection.	During final approach
FS-05.04-B	Detected intermittent AutoFailMS connection/disconnection.	During landing
FS-05.04-B	FS-05.04-B Undetected intermittent AutoFailMS connection/disconnection. Durin	

Table 8 Intermittent AutoFailMS scenarios

3.2.1.1.3 Abnormal scenarios

Analysis of the functional description in "section 2 defines the change" reveals the *abnormal* operational scenarios. Note that, for an aircraft point of view, the scenarios considered abnormal from an ATM perspective are actually considered by other systems (e.g. loss of datalink is covered by SSA referred to datalink).

Ident	Scenarios	
A1	Failure of the C2 link	
A2	R/T Failure	
A3	Intruder in airspace around RPAS	
A4	TCAS alert (related to intruder scenario A#3)	
A5	Unexpected instruction from ATC to deviate from planned flight path	
A6	Extreme weather conditions	
A7	Busy airspace	
A8	Incorrect maintenance of aircraft equipment	
A9	Incorrect actions by remote pilot	

Table 9 Abnormal scenarios

Refer to Rec_04 for discussion about abnormal scenarios.

3.2.2 Context C0-2: Level of safety

This item of context (**C0-2**) defines that introduction of the RPAS must achieve a level of safety which is no worse than that achieved in equivalent manned operations. (Note: this is carefully worded to include the effect on the safety of the whole system, not limited to just the RPAS itself.)

However, we also need to identify how the AutoFailMS element of the RPAS system contributes to achieving this acceptable level of safety. We need to do this for each domain in which we have to assess the impact of the Autonomous failure Management System on safety. As per 2.5 the main domains affected will be the aircraft domain, the ATM domain the remote pilot and the maintenance. The approach is for each domain is outlined below.

For this case study, we interpret the requirements on the AutoFailMS on the aircraft&AutoFailMS domain as follows:

In the aircraft domain, the certification specifications set probability objectives dependent on the severity of the failure. In this regard the objectives set by the JARUS [9] are the same as those set by CS-25. These objectives are therefore reasonable to adopt for this case study.

- the AutoFailMS(when working correctly) must maintain the same level of performance (detection, isolation, reaction) as the pilot which it is replacing; this is an essential requirement to ensure that the RPAS operation are transparent for the ATM. Implicitly it means that the RPAS assisted by Autonomous Failure Management Systems needs to ensure the adherence to flight plan, separation assurance and collision avoidance and landing to emergency site qualitatively and quantitatively as a manned aircraft. The Er-010[16] has performed an analysis of the impact of RPAS operation in ATM.
- The AutoFailMS (under failure conditions) must meet the safety level equivalent to manned aircraft. This is understood the global safety objective for an RPAS equipped with AutoFailMS shall meet the JARUS objectives (as appropriate to the severity of the failure). The allocation of safety objective as from RPAS to each aircraft system should follow the ARP4754A/ED79A [13] rules. Refer to JARUS [9])

For the RPAS equipped with an AutoFailMS, there are two types of objective, performance (driven mainly by ATM needs) and safety (driven by safety effects of failure) both objectives can be justified as per ARP 4754A/ED79A.

For this case study, we interpret the requirements of the AutoFailMS on the ATM as follows:

In the ATM domain, the certification specifications are based on essential requirements (in 216/2008) and "common" requirements (in 1035/2011). The RPAS operations need to be compliant with those. For the purpose of this case study, as stated in § 2.3, the ATM certification specification will be proposed by using the D1.3 methodology. Note that for an ATM certified to provide navigation services to a mixed fleet (RPAS and manned aircraft), the ATM should meet requirements related to the RPAS operation in mixed environment, but not requirements related to the Autonomous Failure Management System itself.

• The ATM (when RPAS assisted by AutoFailMS operation as normal) must maintain the same level of performance (navigation service provision) for a mixture of RPAS and manned aircraft as is achieved today in fully manned operations. For example, the RPAS normal operation might imply

as well a diversion to a landing side, in such case the ATM needs to ensure safety (in terms of safe separation) at the same level than today.

The ATM (when RPAS in failure due to an AutoFailMS failure) must maintain the same level of
performance (navigation service provider) for a mixture of RPAS and manned aircraft as is
achieved today. For example, after a failure implying loss of C2 and loss of AutoFailMS, the ATM
needs to ensure safety (in terms of safe separation) at the same level as today. This might imply
the creation of ATC procedures for RPAS in uncontrolled situation.

For this case study, we interpret the requirements of the AutoFailMS on the pilot as follows:

The remote pilot is defined as a backup for the AutoFailMS, at any moment the pilot can reverse to manned mode and take over RPAS operations.

- The pilot (when AutoFailMS operation as normal) validates trajectory changes (as pilot is defined to be the owner of trajectory) and survey aircraft status. Remote pilot needs to perform these functions with an equivalence of performance of a pilot physically on board of the RPAS.
- The pilot, in case of faulty AutoFailMS, needs to replace the AutoFailMS and ensures the safety of the RPAS operations at a level similar to a manned aircraft (CS-25).

For this case study, we interpret the requirements of the AutoFailMS on maintenance as follows:

The maintenance is by definition preventive and corrective activities whose objective is to keep aircraft system at the level of performance expected. Hereafter only preventive aspect is considered.

- The maintenance team (when AutoFailMS operation as normal) needs to periodic checks and maintain activities according to current regulation. See §4.3.1.4
- The maintenance team (when RPAS operation assisted by a faulty AutoFailMS) needs to periodic checks and maintain e activities according to §4.3.1.4

These previous paragraphs have presented the safety level on each impacted domain the overall safety level on RPAS operation assisted by AutoFailMS is a common objective to be achieved by all aviation stakeholders. It is essential to present the safety impact of failures on each domain, this can achieved by a severity matrix. For this Use Case a severity matrix has been created taken as inputs JARUS [9](related to aircraft) ER-010 [16]. See paragraph 5.1

3.2.3 Context CO-3: RPAS as adaptation of existing aircraft

CO-3 identifies that the RPAS is conceived as an adaptation of an existing civil piloted fixed wing cargo aircraft: this provides a significant amount of background information regarding the performance and behavior of the

aircraft; it also helps in the decision over the certification basis to use for the assessment. Refer to stage 1 for further details of functions installed on the RPAS.

3.2.4 Context C0-4: Autonomous Failure Management System part of larger change

This case study covers the development of a failure management system (Autonomous Failure Management System) for a Remotely Piloted Aircraft System (RPAS). The RPAS is conceived as an adaptation of a (generic) existing civil fixed wing cargo aircraft with flight crew on board (see C0-3). The scope of the RPAS will include the aircraft, the ground station used to pilot the aircraft and the communications link between aircraft and ground station.

However, introduction of Autonomous Failure Management System is only part of the change needed to convert an existing aircraft to an RPAS. Thus it is assumed that the change considered in this case study is part of a package of changes (to be implemented simultaneously) in order to convert the existing aircraft. (The alternative would be to introduce this extension of the Autonomous Failure Management System after the RPAS entered service – however it is inconceivable in this case, as an RPAS without an adapted Autonomous Failure Management System would not achieve certification to operate. (Refer to Appendix A for detailed delta between RPAS and manned on board aircraft)

For the purpose of this case study we assume that the adaptations will include provision of a Detect and Avoid function.

This context makes it easier to see how the Autonomous Failure Management System contributes to the overall "no less safe than piloted aircraft" argument. In the full application of the D1.3 approach this context significantly affects claim 4 (transition), as it means that the Autonomous Failure Management System is part of the transition into RPAS operations, rather than being a separate transition after RPAS operations commence.

Note The case study has shown that it is very difficult to make a certification argument for only part of a change because (a) of the major assumptions which need to be made about the other parts of the change; (b) the fact that some of the analysis required has to be done at the level of the RPAS system, because (in the end) it is this system which is being shown to be safe. In addition (although not addressed in this case study) claim 4 (migration) would have to be made at the level of the introduction of the RPAS.

3.2.5 Context C0-5: Operational environment

C0-5 defines the operational environment to which the safety argument applies *.Note: this context does not mean that the AutoFailMS will not work outside this environment; it just means that the argument presented here does not cover operations outside these parameters.*

We limit the scope of the argument to consider only class A, B and C airspace. However, it is noted that the inclusion of class C airspace introduces VFR traffic and therefore depends on the RPAS including a Sense and Avoid function (see C0-4).

			ARCOS Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	45
Issue:	1.1	Classification:	Restricted

We do not require visual contact between pilot and aircraft.

We assume that all communications between pilot and other actors is via the aircraft. (I.e. to the other actors, the aircraft appears to be piloted.)

3.3 Claim 1: Introduction of *Autonomous Failure Management System* specified to contribute to safe operations

Methodology proposed in D1.3 [1] the Claim 1(see Figure 4) is that the change to introduce the *Autonomous Failure Management System* is specified such that it contributes adequately to an acceptable level of safety for the RPAS. The acceptable level of the safety for RPAS operation is agreed to be decided by EASA. For the purpose of this safety study it is agreed that safety of RPAS operation is kept as "per today"

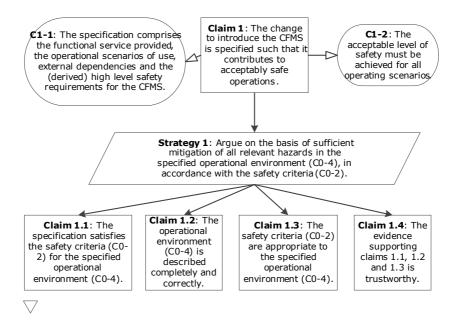


Figure 4 Argument that AutoFailMS is specified to be acceptably safe (Claim 1)

Claim 1 is supported by the following items of context⁵:

Context C1-1: explains that the specification of the AutoFailMS satisfies the safety level (C02) for the operational environment (at the functional level – see section 3.2.4) It comprises the following items.

- a "black box" definition of the function provided by the AutoFailMS;
- a description of the operational scenarios in which it is used, covering normal, abnormal and (self)failure scenarios;

⁵These items of context are in addition to the context already defined for Claim 0: in the GSN notation, context from higher level claims is automatically "inherited" by the lower level claims.

- the high level safety requirements for the AutoFailMS;
- The interactions, at the functional level, between the AutoFailMS and the rest of the TAS.

At this level of claim 1, the methodology D1.3 does not consider how the AutoFailMS is actually implemented⁶; thus there is no consideration of equipment or specific human roles, just what the AutoFailMS will achieve and how it will interact with the rest of the TAS.

Note: the specification referred to here is developed as part of the work to support claim 1, it is not required (or possible) for it to be complete before the stage 4 assessment starts.

• Context **C1-2**: clarifies that the acceptable level of safety (defined in Context 0-2) must be achieved for all the operating scenarios, including normal, abnormal and (self) failure scenarios.

This claim (Claim 1) is then decomposed into subclaims (Claims 1.1 - 1.4); together these claims combine to satisfy claim 1, in the same way that claims 1-4 combine to satisfy claim 0. The main claim is Claim 1.1 (that the specification satisfies the safety criteria for the specified operational environment): this is elaborated further below. The other claims may seem obvious, but they are listed to emphasize that we also need to demonstrate that:

- Claim 1.2: the description of the operational environment (C0-4) is complete and correct;
- Claim 1.3: the safety criteria (CO-2) are at the correct level and match the operational environment. (This might be supported by engineering judgment, refer to WP 3.5 task of TESG)I
- Claim 1.4: sufficient backing evidence is in place to show that the direct evidence supporting the claims can be relied upon i.e. used suitable processes which were correctly applied by competent personnel. (refer to backing evidence 3.6)

3.4 Claim 1.1: The specification of the AutoFailMS) satisfies the safety criteria (C0-2)

Claim 1.1 is that the specification (of the AutoFailMS) satisfies the safety criteria (C0-2) when operating in the specified operational environment (C0-4). The main assessment to support this claim will be <u>a form of</u> functional hazard assessment, using techniques which are well-established in assessing concepts (rather than equipment)..

Strategy 1.1 explains that the strategy for demonstrating Claim 1.1 is to show that all hazards have been identified and that the specification provides sufficient mitigation for those hazards, both for the designed operation of the AutoFailMS (in the absence of (self) failure) and in the event of (self)failure of the AutoFailMS.

⁶It is obviously important that the concept is capable of being implemented: thus achievability is addressed in claim 2.

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	47
Issue:	1.1	Classification:	Restricted

Each of the sub-claims 1.1.1 to 1.1.3 is described further in the sections below.

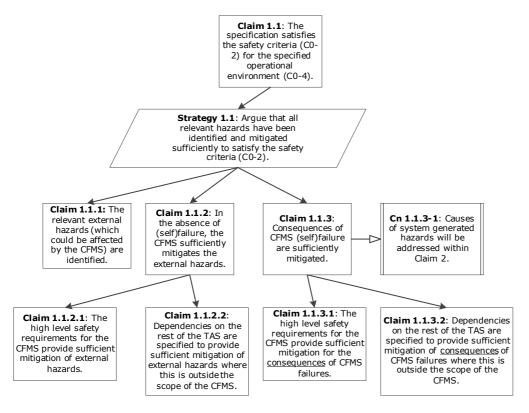


Figure 5 Argument that AutoFailMS specification satisfies the safety criteria (Claim 1.1)

Note that the methodology by D1.3 establishes a clear distinction between the safety level achieved in normal conditions (claim 1.1.2) and the safety level achieved in failure conditions (claim 1.1.3).

3.4.1 Claim 1.1.1: Generic hazards are identified

The methodology proposed by D1.3 presents a distinction between the hazards that the system intend to mitigate (named pre-existing hazards), and the hazard that the system generates (self failure hazards). From an ATM point of view, the hazards are inherent to the aviation, and most of the systems introduced on the aviation industry aim at mitigating these hazards. Although it is possible that the introduction of something new into the environment will introduce a new hazard, it is far more likely that, at the system level, it will affect existing hazards. This reasoning makes sense on the ATM perspective, as most of navigation services are focused on providing safe operations. However from an aircraft perspective, the systems installed on an aircraft aim at providing the capacity of flying. It these systems works as intended the safety is ensured, in case they do not work as intended the safety might be impaired. This different approach to safety presents two main impacts:

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	48
Issue:	1.1	Classification:	Restricted

From an aircraft perspective the failure of the system impact on the safety, from the point of view of ATM domain, the hazard is anything that could induce an accident. See below the definition to hazard according to ARP4757 attached to the concept of malfunction, errors, etc.

- .EC1035/2011: hazard' means any condition, event, or circumstance which could induce an accident
- ED78A: A situation which has potential to lead harm
- ARP4754-ED79: potentially unsafe condition resulting from failures, malfunctions, external events, errors, or combinations thereof where safety is affected.

In order to avoid any kind of misinterpretation, at the level of the total aviation system, we refer to "generic hazard" as "any potential unsafe situation at TAS level that the system under study (RPAS operation) shall contribute at the level which is acceptable safe as per C0-2". Example of "generic hazards" (refer to Rec_05)

- Loss of control in flight
- Loss of separation
- Increase in ATM workload

In the case of the AutoFailMS, note that the AutoFailMS is expected to manage the failures as a pilot on board. The "external hazards" would be all these failure that the AutoFailMs is intended to manage (e.g. aircraft systems failures). This "external hazard" is actually a self-failure hazard to other system (e.g. loss of bus bar). In the case of the aircraft, the regulation is applied over the aircraft (CS-25) and cascaded to the systems (ARP4754A/ED79A). The hazards, weather external or self-failure are regulated under the same principles, in this Use Case, the term "generic hazard" will be used.

3.4.2 Claim 1.1.2: AutoFailMS provides sufficient mitigation of RPAS operation failures

This claim is about showing that the AutoFailMS, when operating without (self) failure, provides sufficient protection against failures of the other RPAS aircraft systems. Essentially, this answers the question of whether the AutoFailMS is providing the required level of performance at doing the job it is intended for, when it is operating correctly. The AutoFailMS (when working correctly) must maintain the same level of performance (detection, isolation, reaction) as the pilot which it is replacing.

The output of this part of the assessment is still at a high level, considering the AutoFailMS as a "black box" and yielding high level safety requirements for the AutoFailMS function. From an aircraft perspective, these requirements are considered functional requirements.

The high level safety requirements are derived through the identification and assessment of normal and abnormal scenarios. The scenario defines how the AutoFailMS contributes to the safety of RPAS operation in no AutoFailMS failure conditions. The AutoFailMS replaces to the pilot in managing the failure. AutoFailMs contribution to safety in no failure conditions consists in working as intended, the safety requirements are design requirements. The high level safety requirements developed to support this claim form part of the specification of the AutoFailMS, as defined in Context **C1-1**.

Claim 1.1.2 is subdivided into two subclaims to emphasize that, as well as deriving requirements on the AutoFailMS itself (Claim 1.1.2.1), it is necessary to define any interactions (at the "black box" level) with other parts of the system (Claim 1.1.2.2), including: ATM, other aircraft, remote pilot, etc.

<u>Claim 1.1.2.1: The high level of safety requirements for the AutoFailMS provides sufficient mitigation of</u> generic hazards

The claim 1.1.2.1 the high level of safety requirements for the AutoFailMS when working in normal conditions provides sufficient mitigation of generic hazards. The AutoFailMS, when working normally, manages the failure conditions to avoid hazards. This claim is supported by the design.

<u>Claim 1.1.2.2: Dependencies on the rest of the TAS are specified to provide sufficient mitigation of the</u> generic (external) hazard where this is outside the scope of the AutoFailMS

The claim 1.1.2.2 expresses that the interface between stakeholders and AutoFailMS has been designed in such way that the generic hazards (when not related to the AutoFailMS) are mitigated. As stated in 2.5 the interfaces to be considered are, RPAS, ATM, pilot and maintenance.

- Aircraft: Note that the failures originated the aircraft needs to be managed by definition by the AutoFailMS, in this sense, the dependency aircraft-AutoFailMS is in the scope of claim 1.1.2.1 and not claim 1.1.2.2. The allocation of safety objective among aircraft systems (e.g safety objective for electrical system and for AutoFailMs) and the safety requirements (e.g AutofailMs impose a safety requirement of electrical systems) are supported by ARP 4754A/ED79A.
- ATM: In first place, the introduction of an RPAS in the non-segregated airspace is expected to be transparent for the ATC as the AutoFailMS has not been designed to mitigate ATM hazards. However, the AutoFailMS replaces the pilot is all continuous monitoring and surveillance, in this sense, the AutoFailMS needs to identify potential ATM mistakes in the same way that a pilot on board. This is in the scope of AutoFailMS. The dependency aircraft-AutoFailMS is in the scope of claim 1.1.2.1 and not claim 1.1.2.2.

In second place, the introduction of RPAS in the non-segregated airspace might modify the level of performance (e.g continuity, availability, message corruption rate) that the aircraft requires from of ATM, this might imply an update of the performance requirements in current regulation (ED-85A, ED-89A, ED-160, ED-120-A and ED-122-A).

- Remote pilot (crew): As per stage 1, the pilot is a backup in case of failure of the AutoFailMS (autonomous mode), in this sense, the AutoFailMS is in charge of management of failures. When the AutoFailMs is working in nominal conditions, remote pilot is in back up. Claim 1.1.2.2 N/A to remote pilot dependency.
- Maintenance organization. Any aircraft system installed on an aircraft performs test automatically these test are asked by the Build in Test Equipment system, these tests are performed periodically or

after a certain even that triggers them. Potential mistakes of maintenance team over the AutoFailMS would be identified by BITE system. It is not in the scope of AutoFAilMs to identify the mistakes/errors of maintenance team. N/A to maintenance dependency.

As a conclusion, it is shown that claim 1.1.2.2 is not applicable to AutoFailMS dependencies or it is referred to claim 1.1.2.1. This is because the AutoFailMS scope is to mitigate the failure conditions. In this regard the safety level of AutoFailMS is to keep current safety performance, and therefore no mitigation of external hazards is expected.

The requirements related to claim 1.1.2 (see normal and abnormal scenarios) is defined as functional requirement. If AutoFailMS works as intended the current safety level is kept. Claim 1.1.2 can be phrased as AutoFailMS works as intended.

3.4.3 Claim 1.1.3: Sufficient mitigation of AutoFailMS (self) failure

This claim shows that the consequences of failures of the AutoFailMS itself are sufficiently mitigated. As with Claim 1.1.2, the output of this part of the assessment is still at a high level, yielding high level safety requirements for the AutoFailMS function.

The high level safety requirements are derived through the identification and assessment of (self) failure scenarios.

The high level safety requirements developed to support this claim form part of the specification of the AutoFailMS, as defined in Context C1-1.

Claim 1.1.3 is subdivided into two subclaims to emphasize that, as well as deriving requirements on the AutoFailMS itself (Claim 1.1.3.1), it is necessary to define any interactions (at the "black box" level) with other parts of the system (Claim 1.1.3.2), including: ATM, other aircraft, remote pilot.

<u>Claim 1.1.3.1: The high level of safety requirements for the AutoFailMS provide sufficient mitigation for the</u> <u>consequences of the AutoFailMS failures</u>

Claim 1.1.3.1 can be considered supported by the SSAs at system level. The mitigation against self-failures in the scope of the AutoFailMS deals with the system design (e.g. equipment redundancies, etc) and is based on the application of ARP4754A/ED79A. The safety objectives (in terms of probability and performance) are not independent aircraft architecture and system design. The SSA of a system and the FHA at aircraft level are interrelated.

Claim 1.1.3.1 for RPAs and for AutoFailMS system can be expressed as follows: The high level f safety requirement for RPAS operation supported by AutoFailMS is compliant with JARUS [9]

<u>Claim 1.1.3.2: Dependencies on the rest of the TAS are specified to provide sufficient mitigation of the generic consequences of the AutoFailMS failures where this is outside the scope of the AutoFailMS</u>

This claim expresses that the interface between stakeholders and AutoFailMS have been designed in such way that the hazards generated by AutoFailMS (AutoFailMS in failure conditions) are mitigated. As stated in 2.5 the interfaces to be considered are, RPAS, ATM, pilot and maintenance.

- Aircraft: Note that the impact of the AutoFailMS failure in other aircraft systems is actually part of the scope of the aircraft FHA. The aircraft FHA summarizes the results of the aircraft systems SSAs. The SSAs for the Autopilot and the FHA for the RPAS cannot be split, but considered as a one single claim. Refer to Claim 1.1.3.1
- Remote pilot (crew). As per stage 1, the pilot is a backup in case of failure of the AutoFailMS (autonomous mode), in this sense, the pilot is the back up of the AutoFailMS. The AutoFailMS and the pilot are not independent entities, the pilot procedures and the types of AutoFailMS need to be designed in such a way that the remote pilot could take over the RPAS as if he/she was onboard. (E.g. assessment on workload). The claim 1.1.2 will be defined as follows: The dependencies the RPAs operations assisted by an AutoFailMS and the remote pilot shall be assessed in such way that enable RPAS operations to be compliant with JARUS [9]. This implies the update of AFM and FCOM. Refer to 4.3.1.2
- ATM: The dependencies with the ATM must be specified in such way that the hazards created by the introduction of an RPAS equipped with AutoFailMS were mitigated. In the failure scenarios, the interactions between the RPAS equipped with AutoFailMS have been addressed from the point of view of the impact on the ATC (impact on flight adherence, separation and collision avoidance and landing on emergency sites) and the point of view of the impact of the ATC failure on the RPAS operations (loss and/or erroneous datalink) The scenarios have been enriched as well with several failure combination modes. To elaborate these scenarios, the document ER-010 [16] has been used as an input. Claim 1.1.3.2 for the ATM is expressed as follows : The dependencies the RPAS operations to keep the same level of safety performance (in tem of adherence to flight plan, separation and collision avoidance and landing in emergency site) are current operation. Note that the claim 1.1.3.2 implies an update of the level of performance of datalink services ATM as well.
- Maintenance organization. The activities related to maintenance are kept as today. The maintenance organization will comply with the maintenance activities and required by Part M. Refer to 4.3.1.4

As a conclusion, it is shown that the safety level in case of failure for AutoFailMS and RPAS operation is stated by current regulation, of the ATM the claim 1.1.3 has been elucidated using D1.3 methodology (as presented in 2.1)

3.5 Claim 2: Realistic logical design satisfies specification

As per defined in D1.3 Claim 2 is that the logical design of the AutoFailMS satisfies the specification (which was defined in support of Claim 1) and is realistically achievable. The logical design includes the architecture of the AutoFailMS (including its impact on the communications link and the remote pilot); it will also consider the other affected elements of the TAS (including primarily ATC and other aircraft). The logical design can largely be developed from the description given in stage 1.

For this Use Case, note that current regulation answers to claim 1. The current regulation ARP4754A/ED79A defines main lines of the logical design refer to Figure 6. When regulation missing (e.g. interface with ATM) it is possible to enlarge the ARP4754A/ED79A scope (Figure 8 and Figure 9) or to develop new regulation (Rec_10).

Note that ARP 4754A/ED79A not only addresses logical design but as well it imposes certain requirements on the equipment (e.g. IDAL) and it develops the safety objectives presented in CS-25. ARP 4754A/ED79A covers not only Claim2 but as well claim 1. This aspect will be further developed in chapter 4

3.5.1 Claim 2.1: the logical design satisfies the specification for the specified operational environment.

Application of ARP4754A/ED79A to the RPAS and to the AutoFailMS

The ARP 4754A/ED79A establishes safety objectives of the RPAS operations for both functional and safety objectives. The ARP 4754A/ED 79A might be modified to support RPAS (See JARUS [9]). As stated in both ARP 4754A/ED79A and JARUS [9] the RPAS and its systems (e.g. AutoFAilMS) needs to be compliant with certain safety objectives. These safety objectives are based on the high level requirement that "RPAS must not present a greater risk to persons or property on the ground or in the air than that attributable to manned aircraft of equivalent category". The ARP 4754A/ED79A and JARUS [9] establishes safety objectives that are traceable from claim 1. (refer to appendix E.2)

These safety objectives are cascaded to systems according with rules specified in the ARP 4754A/ED79A. The application of ARP4754A/ED79A covers both RPAS and AutoFailMS systems for both normal and failure conditions.

Claim 1.1.3.1& claim 1.1.3.2 RPAS and claim 1.1.2.1& claim 1.1.2.2 RPAS are covered by ARP4754A/ED79A.

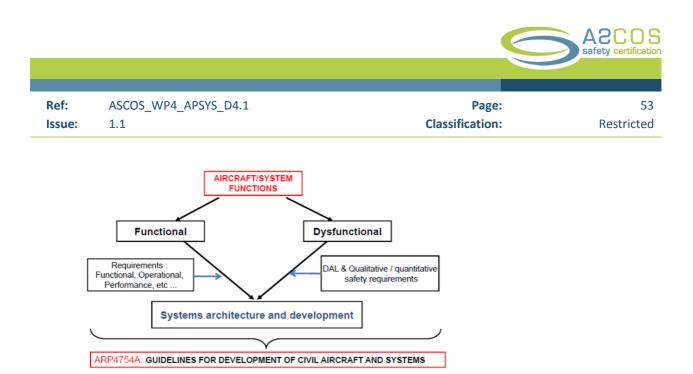


Figure 6 ARP4754A/ED79A Guidelines for development of civil aircraft and systems functional and dysfunctional requirements

The ARP 4754A/ED 79A imposes as well qualitative (e.g DAL) an quantitative objectives in the architecture of the AutoFail MS system. In this sense the application of ARP 4754A/ED 79A is addresses claim 2.1. For this reason standards are used to support claim 1.2

The ARP 4754A/ED 79A establishes as well safety requirements for the interface between the systems in the aircraft (e.g objective of common modes for AutoFailMS and FGCS). To sum up the application of standards is not independent from the design of the aircraft systems, this is driven mainly by DAL..

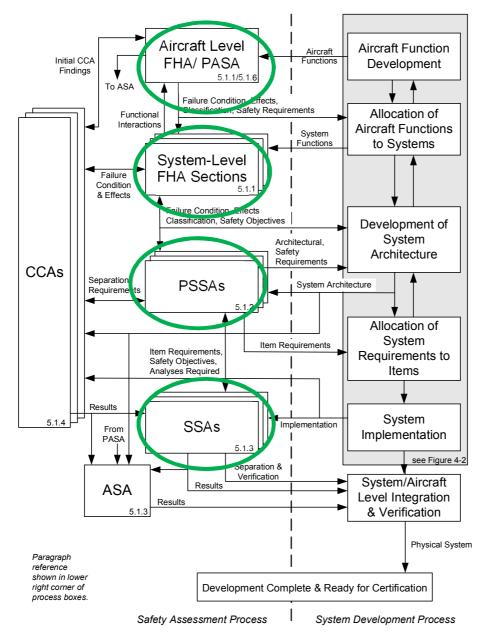
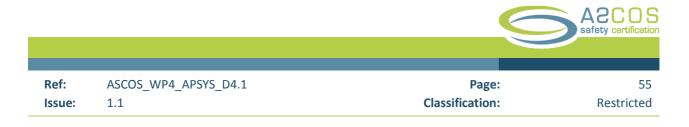



Figure 7 ARP4754A/ED79A Safety requirements at aircraft and system level.

. The DAL is the development assurance level that a certain function need to comply with. This development assurance level ensures that the design is resilient again development errors. The DAL level depends on the severity of the function failure: The DAL assignment depends also on the independencies implemented in architectures development process (from requirement development to hardware and software development). The top level DAL is allocated using the following table from ARP4754A/ED79A

Error severity Classification	DAL of the Develop. process
Catastrophic	Α
Hazardous / Severe Major	В
Major	С
Minor	D
No safety effect	E

Table 10 Error severity classification and top DAL

There are two types of DAL: One for function development (FDAL) and one for item development (IDAL). Te IDAL follows the FDAL level.

- FDAL (Function Design Assurance Level) is level of rigor of tasks performed to functions in a development process. It applies to function development (requirement elaboration phase): A/C Functions, Systems functions, Sub-Systems functions, equipment functions.
- IDAL (Item Design Assurance Level) is the level of rigor of tasks performed to items in the development process. IDAL applies to hardware and software items development. These items are addressed ion stage 7 in D1.3 methodology) IDAL is an input for the application of DO-178B/ED-12B (software) and DO-254/ED-80 (Hardware).

Consequently the application of ARP4574A/ED79A covers as well the stage 7 not addressed on this Use Case.

Application of current regulation to the interface with remote pilot

As stated in 2.5.2 the remote pilot and the AutoFailMS are designed together. The design of the remote pilot might ensure that the remote can answer as expected to the failure in the AutoFailMS. The pilot requirements (e.g. limits of workload) are considered in RPAS design. System Safety Assessment developed under ARP4754A/ED79A also consider the inputs to the AFM and FCOM. It is noted that there is no standards for procedures development, it would be reasonable to have a standards process. Refer to Rec_10. Refer to 4.3.1.2

Application of current regulation to the maintenance activities

The maintenance activities are defined as per current regulation from the safety and performance requirements. The objective of maintenance activities is to prevent and to mitigate the failure conditions. The application of ARP457A/ED79A provides inputs to the maintenance activities. Refer to 4.3.1.4

3.5.2 Claim 2.2: the logical designs of RPAS operations assisted by AutoFailMS are compliant with ATM requirements

Until this point, the claims have been answered by current regulation. However, as stated in 3.1 the requirements related to the ATM will be developed by D1.3. Claim 2 needs to answer to Claim 1

Claim 1.1.2.2_ATM: In first place, it has been stated that the RPAS operation must be designed in a way that was transparent for the ATC, therefore the design can be covered by ARP 4754A/ED79A. However there is no actually any clear interface between the aircraft and the ATM. Currently, for example in the case of datalink, there is a methodology called ED-78A that enables to share safety objectives and safety requirement between the ATM and the aircraft. Refer to 7.2

In the frame of this Use Case, we can suggest that the performance requirements of the RPAs operation supported y AutoFailMS were enriched by three main requirements from ATM [16]:

- RPAS shall follows the flight path with the same performance than a manned aircraft
- RPAS shall assures a safe separation and the avoidance of collision with the same performance than a manned aircraft
- The RPAS shall lands in a predefined place or in an emergency place with the same performance than a manned aircraft

Note that the ATM can impose, if necessary, more sever safety objective that those in ARP4754A/ED79A, for example, it is possible that in TMA, the missed approach (assessed as Min or at worst MAJ in current FHAs) would be imposed by ATM to be considered as HAZ (for ATM) and it is possible as well that ATM impose quantitative objective (loss of data link under E-07 rather than E-03 as nowadays) due to ATM reasons. They will depend on the type of airspace

ATM requirements

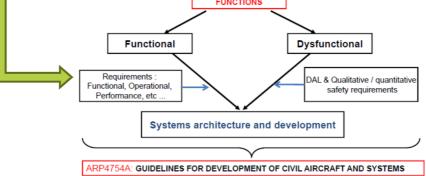
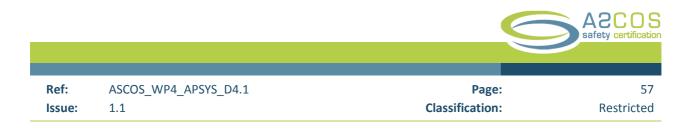
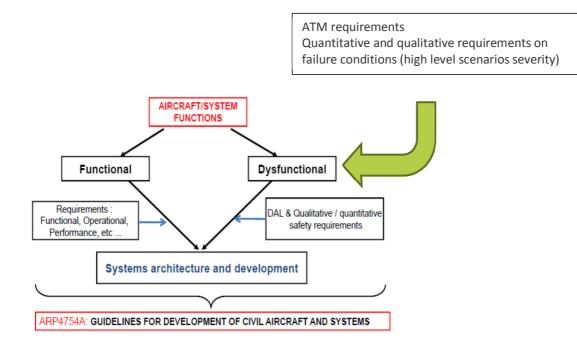



Figure 8ATM requirements and ARP 4754A/ED79A. Functional requirements


The D1.3 enriches the scope of the ARP4754A/ED79A. In this way a larger application of the ARP4754A/ED79A answers to the claim 1.1.2 for the ATM.

In second place, it has been mentioned that the introduction of RPAS into non-segregated environment might imply an increase in the performance level of the datalink services that the aircraft expects from the ATM. Currently loss or erroneous datalink with ATM is assessed MAJ for aircraft, if the performance requirements imposed to the ATM was more strict (see claim 1.1.2.1 and 1.1.2.2) it would be necessary to update the design requirements for ATM. Refer to the Rec_09

Claim 1.1.3 2 for the ATM needs as well an interface with the RPAS. The ATM can ask for certain level safety objective (quantitative and qualitative) to the RPAS operations. This level of safety was later cascaded to the systems (e.g. to the AutoFailMS) and to the items (e.g. to the datalink antennas) to ensure that the aircraft provides with the proper level of safety.

Refer to 4.3.1.3 for coordination among ATM and aircraft standards Refer to the Rec_09 to discussion about safety requirements.

Figure 9 ATM requirements and ARP 4754A/ED79A. Dysfunctional requirements

As a conclusion, the current standards framework allows to answer to claims. These standards needs however a revision.

3.5.3 Claim 2.3: the logical design of the interface pilot in back up and AutoFailMS .is designed is such way that the RPAs operations keeps the same level of safety performance

As stated in 3.4.3 there is no recognized safety standards for the creation of the procedures for the pilot (only manufacturer internal private documentation). The AFM and FCOM consider the inputs of System Safety Assessments and pilot procedures are part of aircraft safety assessment as per ARP4754A/ED79A methodology. But it cannot be considered that the application of ARP4754A/ED79A is enough to support the safety analysis of AutoFailMS safety impact on pilot. It is necessary to address the quality level necessary to mitigate procedure development errors or errors in application by the crew.

The scenarios presented in this Use Case addresses as well some requirements for the pilot in case of failure of AutoFailMS. Refer to Table 17. These requirements will be part of human performance team that will include the requirements in the AFM and FCOM. Refer to 4.3.1.2

3.6 Backing evidence

Direct evidence is the evidence that a particular claim is satisfied – this is evidence relating directly to observable properties of an output or product.

The argument must also be supported by backing evidence, which is the evidence there is sufficient confidence in the direct evidence, i.e. that the processes followed were suitable and that they were undertaken by suitably competent people.

In this Use Case the evidence is ensured by using approved standards.

3.7 Certification Argument

Claim 0- The failure management system (AutoFailMS) contributes to acceptably safe RPAS operations

C0-1 the function AutoFailMS is defined at a level which identifies scenarios of operation and interfaces with the rest of the TAS.

C0-2 Acceptable level of safety for introduction of RPAS is defined as no worse the current equivalent on board piloted (this is then interpreted for the impact of AutoFailMS in each domain). For this Use Case For this Use Case a severity matrix has been created taken as inputs JARUS [9](related to aircraft) ER-010 [16]. See paragraph 5.1

CO-3 The RPAS is conceives as an adaptation of a generic civil on board piloted fixed wing cargo aircraft currently in service

CO-4 the AutoFailMS is introduced as a part of a package of changes to adapts the existing aircraft to become an RPAS

C0-5 the argument assumes that the following operational environment is class A, B and C airspace only, no visual between pilot and aircraft, and all voice comm. via aircraft

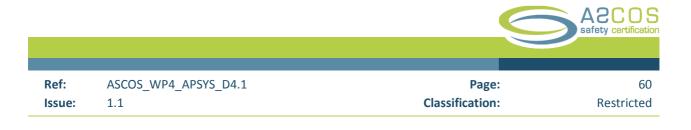
Claim 1-the change to introduce the AutoFailMS is specified such that it contributes to acceptably safe opera rations.

Claim 1.1 the specification satisfies the safety criteria (C0-2) for the specified operational environment (C-04) Claim 1.1.1: Relevant generic hazards are identified. Refer to Rec_06

Claim 1.1.2: In the absence of self-failure the AutoFailMS sufficiently mitigates the external hazards Claim 1.1.2.1 the high level safety requirements for the AutoFailMS provide sufficient mitigation of external hazards. Supported by design (refer to ARP 4754A/ED79A) Claim 1.1.2.2 Dependencies on the rest of the TAS are specified to provide sufficient mitigation of external hazards where this is outside the scope of the AutoFailMS

- Aircraft dependency: referred to claim 1.1.2.1
- ATM dependency: dependency: referred to claim 1.1.2.1
- Remote pilot dependency: N/A
- Maintenance dependency: N/A
- Claim 1.1.3 Consequences of AutoFailMS self-failure are sufficiently mitigated

Claim 1.1.3.1 the high level safety requirements for the AutoFailMS provide sufficient mitigation for the consequences of the AutoFailMS failures Supported by design (refer to ARP 4754A/ED79A)


Claim 1.13.2 Dependencies on the rest of the TAS are specified to provide sufficient mitigation of consequences of AutoFailMS failure where this is outside the scope of the AutoFailMS

- Aircraft dependency: referred to claim 1.1.3.1
- ATM dependency: dependency: referred to claim 1.1.3.1
- Remote pilot dependency: referred to human interface (Rec_10)
- Maintenance dependency: referred to claim 1.1.3.1

Claim 1.2 the description of the operational environment (C0-4) is complete and correct; (Rec_04) Claim 1.3: the safety criteria (C0-2) are at the correct level and match the operational environment ; (This might be supported by engineering judgment, refer to WP 3.5 task of TESG refer to Rec_01 and Rec_02) Claim 1.4- The evidence supporting claim 1.1, 1.2 and 1.3 is trustworthy. Supported by standards

Claim 2 the logical design of the AutoFailMS satisfies the specification is realistically achievable

Claim 2.1 the logical design satisfies the specification for the specified operational environment Claim .2.2 the logical designs of RPAS operations assisted by AutoFailMS are compliant with ATM requirements Claim 2.3: the logical design of the interface pilot in back up and AutoFailMS .is designed is such way that the RPAS operations keep the same level of safety performance.

4 Stage 3: Develop and agree a certification plan

4.1 Introduction

This section describes how the approach proposed by ASCOS D1.3 to organize the demonstration of safety can be used to develop and agree the certification plan for an RPAS AutoFailMS function, taking into account the regulatory requirements currently applicable.

The certification plan is the reference for communication between the stakeholder which is seeking for certification of its product and the certification authority, which need to be entirely satisfied of the application by the stakeholder of applicable regulatory requirements before granting the certificate. The Certification Plan needs to contain at least the following elements:

- An overall description of the system, its limits and the way it is interfaced with other systems. This description is primarily intended for experts of the authority. It may highlight relevant aspects as technical novelties, and for changes involving multiple stakeholders, relationship with other products for which a certification is sought by a partnering stakeholder. When more domains are affected the description must mention the relationships between the domains and the relevant assumptions
- Agreement with the authority on a full and consistent set of applicable regulatory requirements and related guidance material. This may require establishing a common agreement between the different authorities involved
- A framework to the authority on how to seek agreement on any further technical issues related to the interpretation of the regulatory requirements that may arise during the design and development of the product
- A comprehensive description of how the evidences will be produced that all the regulatory requirements are complied with
- Agreement with the authority on the organisation of Certification Deliverables. The Certification Deliverables are documents that need either to be approved or agreed or received by the authority prior to granting the certificate. They are to be considered as the core part of the Safety Case
- An overall description of how the "Continuing Safety activities" will be organized in compliance with the reference standards as the response to the mandatory requirements on safety, introducing actors, activities and key documents as output of these activities, including safety activity interface with partnering stakeholders

4.2 General Description of the change

The certification plan needs to include an overall description of the change, the systems involved, their limits and the way they are interfaced with the other, unaffected systems. This description is primarily intended for the experts of the authority who may have to undertake the supervision of the design and development activities performed by the applicant. It may highlight relevant aspects as technical novelties, and for changes

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	61
Issue:	1.1	Classification:	Restricted

involving multiple stakeholders, relationship with changes on their products for which a certification is sought by a partnering stakeholder. Basically, all the aspects of the change as described in section 2 "Stage 1: Define the change" would be covered, focusing on the introduction of the AutoFailMS function in an RPAS. All relations between the affected domains must also be duly described.

4.3 Claims and arguments

It can be seen from the applicable regulations on airborne products that they actually cover through essential requirements, lower level specifications and AMC all the safety aspects an RPAS aircraft product shall comply with: design, manufacture, maintenance, operation & training.

As a consequence, the development of an "argument architecture" for the RPAS product or for the AutoFailMS system is to be constructed as the elaboration of a full and consistent set of applicable regulatory requirements as the "baseline for certification", focusing primarily on existing acceptable guidance material and standards. The elaboration of the certification baseline is a key element of the certification plan, with the agreement of the plan requiring agreement of the baseline by the authority. This may require establishing an agreement in coordination with the partnering stakeholders and between the authorities involved in the different aviation domains, in order to ensure overall consistency of the different certification baselines proposed by the partners.

4.3.1 High level claim

The applicant of the RPAS airborne segment and designer of the AutoFailMS system has to seek for an agreement with its supervisory authority on a full and consistent set of applicable regulatory requirements and related guidance material. In order to ensure that the authority will be fully satisfied with the demonstration activities and results provided, this agreement needs to be established since the initial step of the RPAS product design.

The certification plan is presented to the relevant authorities and other stakeholders, to gain their agreement that, if the plan is followed and the evidence is presented, they will accept the change into service. Although lack of agreement at this stage does not prevent progress to later stages, the benefit of gaining agreement is to reduce the risk to the certification programme at later stages. This approach can be developed further into requirements. These requirements may all (or mostly) be beneficial, but they introduce significant cost increases if they are introduced progressively through the project.

The ASCOS D1.3 approach proposes to structure the demonstration of safety by building upon the approach of [1] as per Stage 2, suggesting a top-level safety claim (Claim 0) that could be of the form: "*The introduction on an RPAS/several RPAS in the air traffic environment shall keep the same level of safety*", and then cascading this higher level claim in sub-claims.

Besides, and as part of their overall duty of protecting the public in general and the environment, the authorities of the aviation system continuously develop common safety and environmental rules. These rules are usually formulated as a structured argument of safety requirements. In some domains the argument is

			Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	62
Issue:	1.1	Classification:	Restricted

more formulated as a performance requirement than as a defined means of compliance (e.g. in the ATM domain).

As consequence, it must be checked whether the current rules and standards are an adequate argument to satisfy the claims it must also be checked whether the assumptions that are used between the domains are adequately addressed.

4.3.1.1 Means of Compliance argument for Claim 0:

4.3.1.1.1 Within the Product Certification Domain

An RPAS considered as an aircraft of CS25 category should without restriction comply with the Essential Requirements for Airworthiness referred to in Article 5 of the Basic Regulation EC216/2008. These Essential Requirements are stated in the Basic Regulation Annex I, which first requirement reads:

1. Product integrity: product integrity must be assured for all anticipated flight conditions for the operational life of the aircraft. Compliance with all requirements must be shown by assessment or analysis, supported, where necessary, by tests.

This requirement and all subsequent requirements of Annex I are mandatory to the RPAS. Claim 0 of RPAS could thus be directly inferred from it:

Claim 0 of RPAS: The integrity of the RPAS product (i.e.: the RPAS system and operation) **is** assured for all anticipated flight conditions for the operational life of the RPAS system.

All the subsequent requirements of Annex I applicable to RPAS are then as many points that can be expressed as sub-claims for the RPAS.

Now, developing on the safety requirements that would apply to the AutoFailMS as part of the RPAS system, two requirements of Annex I can be put under focus (amongst many others):

- 1. C.2. The aircraft, including those systems, equipment and appliances required for type-certification, or by operating rules, must function as intended under any foreseeable operating conditions, throughout, and sufficiently beyond, the operational envelope of the aircraft, taking due account of the system, equipment or appliance operating environment. Other systems, equipment and appliance not required for type-certification, or by operating rules, whether functioning properly or improperly, must not reduce safety and must not adversely affect the proper functioning of any other system, equipment or appliance. Systems, equipment and appliances must be operable without needing exceptional skill or strength.
- 1. C.3. The aircraft systems, equipment and associated appliances, considered separately and in relation to each other, must be designed such that any catastrophic failure condition does not result from a single failure not shown to be extremely improbable and an inverse relationship must exist between the probability of a failure condition and the severity of its effect on the aircraft and its occupants.

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	63
Issue:	1.1	Classification:	Restricted

Practically, there is actually no need to cascade claims for AutoFailMS from the RPAS level claims as the Essential Requirements have set up so far the essential requirements applicable to the RPAS constituent systems. Thus, Claim 0 of AutoFailMS could directly mirror ER 1.c.2 & ER 1.c.3:

Claim 0 of AutoFailMS: The AutoFailMS system, **does** function as intended under any foreseeable operating conditions, throughout, and sufficiently beyond, the operational envelope of the RPAS, taking due account of the system operating environment.

The AutoFailMS system considered separately and in relation to the other RPAS constituent systems **is** designed such that any catastrophic failure condition does not result from a single failure not shown to be extremely improbable and an inverse relationship must exist between the probability of a failure condition of AutoFailMS and the severity of its effect on the RPAS operation.

As a consequence, the very high level of safety requirements expressed in Annex I is rarely referred by the designers of aircraft products when more convenient and detailed requirements are expressed in some lower level regulations, like the CS25⁷, which are accepted as means of compliance to the higher level requirements of Annex I. For example, article CS 25.1309 "Equipment, systems and installations" reads:

(a) The aeroplane equipment and systems must be designed and installed so that:

(1) Those required for type certification or by operating rules, or whose improper functioning would reduce safety, perform as intended under the aeroplane operating and environmental conditions.

(2) Other equipment and systems are not a source of danger in themselves and do not adversely affect the proper functioning of those covered by sub-paragraph (a) (1) of this paragraph.

(b) The aeroplane systems and associated components, considered separately and in relation to other systems, must be designed so that -

- (1) Any catastrophic failure condition
 - (i) is extremely improbable; and
 - (ii) does not result from a single failure; and
- (2) Any hazardous failure condition is extremely remote; and
- (3) Any major failure condition is remote.

It can be noted that the CS25.1309 details and extends the Essential Requirements on aircraft systems to Hazardous and Major Failure Conditions. So, same as above, the Claim 0 of AutoFailMS could be developed in two sub-claims, by directly mirroring CS25.1309 requirements:

⁷ CS (resp. FAR) are maintained by EASA (resp. FAA) and have no official mandatory status. They are established on grounds of previous experience cumulated by authorities, which gives them a "compulsory" status and explain their designation of "soft law".

Sub-claim 1 of AutoFailMS: The AutoFailMS system **is** designed and installed so that it performs as intended under *all anticipated* operating and environmental conditions of the RPAS product.

Sub-claim 2 of AutoFailMS: The AutoFailMS system, considered separately and in relation to the other RPAS constituent systems, **is** designed so that -

(1) Any catastrophic failure condition is extremely improbable; and does not result from a single failure; and

- (2) Any hazardous failure condition is extremely remote; and
- (3) Any major failure condition is remote.

Where AMC25.1309, supplemented with AMC-RPAS.1309, provides for the agreed definitions and the qualitative and quantitative objectives for all the terms introduced in CS.

The reasoning can be pursued down to the AMC of CS25, with the example of AMC25.1309. Application of the well-known ARP 4754A/ED79A and its related standards is recognized by authority as the backbone of demonstration of compliance to the AMC25.1309.

Finally, as all aspects of certification cannot realistically be completed prior to the starting of design activities, the safety plan should propose to the authority a framework on how to seek agreement on any further technical issues related to the interpretation of the regulatory requirements and the need to consolidate the certification baseline that may arise during the design and development of the product. For EASA or FAA this would be the framework of EASA CRI process (Certification Review Item), or FAA IP process (Issue Paper), which is rather similar framework of discussion and agreement on technical issue in interpretation of the regulatory requirements established by these authorities.

4.3.1.2 Within the Remote Pilot

In a same way than any product intended for sale to the general public must be provided with a "notice of use" leaflet informing the customer of any limitation, precaution and limitation of use, an RPAS product will be required by the supervisory authority of the design to be provided with all necessary documentation for RPAS operation that will define the baseline and specific aspects of the handling of RPAS product for the intended operations. This approach will be very similar to the current approach done for an aircraft product for which operational documentation shall be established as component of the certified product. In addition to the operating manual (the FCOM) which is required by authorities, the AFM (Aircraft Flight Manual) is a document specifically stating all the limitations and particular aspects the operator needs to comply with for safely handling of the product. The authority will have to certify the content of the AFM as part of the aircraft certification.

		Safety certification	
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	65
Issue:	1.1	Classification:	Restricted

The RPAS operator will have to demonstrate to its supervisory authority it operates the RPAS system in conformance with the FCOM and AFM established by the RPAS designer. In case an RPAS operator would seek approval for RPAS operations that were not foreseen or anticipated during the design and certification of the RPAS, supplemental demonstration activities are required in order to demonstrate that safe operation is maintained. This demonstration is likely to involve the design authority (i.e.: the design organisation) and its authority, if the change is deemed significant by the operator's authority in terms of operational context or performance (for example, the extension of the maximum distance allowed to an emergency landing site).

4.3.1.3 Within the ATM domain

The demonstration of safe operation of RPAs would probably require specific involvement and handling of the ATCo (e.g.: contingency handling, specific communication channels, etc...) and key assumptions on ATCo working procedures or Air Traffic Services have to be done, entailing a change in ATM operation, it is expected that the description of the change is properly coordinated between the ATM partner(s) and the RPAS design partner(s).Based on this description of the change in ATM operations, each ATM partner will have then to demonstrate to its authority its ability to maintain safe operation of the ATM services following the change and the introduction of RPAS within the controlled traffic.

For those changes requiring coordination between the RPAS system holder and the ATM side, it is important to ensure that the certification process engaged by an RPAS applicant and its ATM stakeholder(s) towards their respective authorities is consistent and coordinated. Noting that for the ATM domain the structure of regulatory requirements is very similar to the airborne domain, with essential requirements (in 216/2008), "common" requirements (in 1035/2011) and future AMC⁸, it is expected that the requirement for a risk based approach (i.e.: hazard identification, risk assessment and mitigation approach) would be led commonly by all stakeholders on grounds of a standard previously agreed with the authorities (for example by applying a standard methodology ED78A⁹, AMC25.1309, ARP4754/ED79A, ARP 4761/ED135 or a similar approach formerly accepted by the authorities).

4.3.1.4 Within the Maintenance domain

The RPAS product will be required by the supervisory authority of the operator to be maintained in airworthy condition by an approved maintenance organisation complying with regulation EC2042/2003 and addendums ("Part M"). Maintenance shall be carried on in accordance with the maintenance instructions provided by the RPAS designer.

⁸ It is worth noting that AMC or agreed industry standards are still to be published.

⁹ ED78A methodology has been developed and applied in a number of air-ground applications involving multiple stakeholders, initially for datalink.

The RPAS product will be required by the supervisory authority of the design to be provided with all necessary documentation for maintenance. This approach will be very similar to the current approach done for an aircraft product for which maintenance documentation shall be established as component of the certified product. In addition to the maintenance manuals (the AMM, SRM, etc...) which are required by authorities, the Instructions for Continued Airworthiness (ICA) document all the maintenance aspects that are critical for maintaining safe operation of the product. In the case of an RPAS system it might include the ground station. The authority will have to certify the content of the ICA section as part of the aircraft certification.

4.3.2 Sub claims

Claim 1: The change to introduce the AutoFailMS is specified such that it contributes to acceptably safe operations

Means of compliance argument:

- This considers the AutoFailMS at a conceptual level (as described in Context C0-1, see section 3.2.1.1), without considering how it is actually implemented. At this level there is no consideration of equipment or specific human roles, just what the AutoFailMS will achieve and how it will interact with the rest of the TAS. The assessment is based on scenarios of operation of the AutoFailMS and the associated description of the sequence of events in each scenario (see section 3.2.1.2). Scenarios can be classified as: normal, abnormal and failure scenarios. A set of normal scenarios has been developed in section 3.2.1.2. Further scenarios will be identified and defined as part of developing the argument, but may then need to be fed back into the other work undertaken within the case study. If the operation does not change from current, it is considered that the level of safety is equivalent to the current level of safety
- The main assessment to support this claim will be a form of functional hazard assessment (FHA), using techniques which are well-established in assessing functions (rather than equipment). The form of assessment will be explained in more detail in a later version of this document. Analysis at this level identifies the pre-existing hazards relevant to the function and any system-generated hazards introduced / affected by the function. It also identifies the safety objectives which the function has to meet in order to achieve the level of safety defined in Context C0-2 (see section 3.2.1.1), and any assumptions, at the functional level, about the behavior of the related functions.
- If the operation will be different from the current standard, the applicant will argue the safety level to the Authority by comparison with established operations.

Claim2: Logical design of the change to introduce AutoFailMS satisfies the specification and is realistic

Means of compliance argument:

• The logical design includes the architecture of the AutoFailMS (including its impact on the communications link and the remote pilot);

- The main assessment to support this claim will be a form of preliminary system safety assessment (PSSA) of the logical design, using techniques which are well-established in assessing functions and sub-functions (rather than equipment). The form of assessment will be explained in more detail in a later version of this document.
- The main assessment to support this claim will be an assessment of a logical model of the operations and the establishment of requirements
- This model needs also to take into account all the assumptions that are coming from the other domains (CO-1)
- Initially it will be argued that the operation with AutoFailMS is comparable with the current operation.

Claim 3: Implementation of the AutoFailMS is complete and correct

- The implementation of the AutoFailMS is complete and correct in accordance with its specification and logical design. The assessment of the physical implementation considers the evidence that the specific equipment (hardware and software), procedures and any associated human competence requirements fully and correctly implement the AutoFailMS. This includes an assessment of any emerging properties to ensure that they do not compromise the safety of the system. The development of many systems encounters a major problem at this point, namely the limited ability of test-based V&V to show with sufficient confidence that the required safety integrity properties of the system have been met. This leads to the adoption of an assurance based approach.
- The applicant will show that the actual operation documented and used by the applicant fulfill the requirements as derived in claim 2
- The applicant must show that all the assumptions coming from other domains are still fulfilled

Claim 4: Transition to AutoFailMS operation is acceptably safe

Means of compliance argument:

- The AutoFailMS can be brought into operational service safely and includes confirmation that preparation for operation is complete (procedures have been published, resources procured, personnel trained)
- The arrangements for ongoing safety management are in place
- The switchover process has been fully defined and assessed and any appropriate mitigation are in place.
- This claim would be made as part of a wider claim that the RPAS, within which the AutoFailMS is implemented, can be brought into operational service safely (see section 3.2.4).

Claim 5: The use of the AutoFailMS will continue to be demonstrated as acceptably safe in operational service

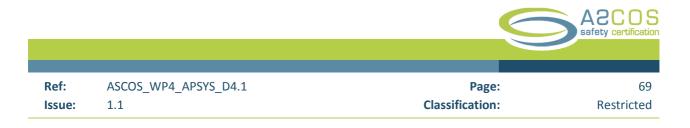
Means of compliance argument:

A2COS safety certification			
68	Page:	ASCOS_WP4_APSYS_D4.1	Ref:
Restricted	Classification:	1.1	Issue:

- Continuous safety monitoring will collect appropriate metrics to confirm the results of the safety assessments undertaken under earlier claims;
- Processes are in place to report, investigate and (where appropriate) correct any safety-related incidents
- Processes are in place to assess any interventions (e.g. maintenance) and demonstrate that risks are known and acceptable.
- Processes are in place to produce lessons learned for future developments

4.4 Coordinated approaches between domains

For changes requiring coordination between the RPAS manufacturer and other domains within the TAS, it is important to ensure that the certification process engaged by the applicant and its stakeholders towards their respective authorities is consistent and coordinated. The Assumptions between the domains need to be carefully addressed


4.4 Content of the certification baseline

The certification baseline that can be proposed for agreement in a first step by the applicant of an RPAS constituent system will be:

- EASA Policy Statement airworthiness certification of UAS (EASA-E.Y013-01_UAS_Policy)
- Regulation (EC) No 748/2012, "Part 21", subpart B. (explicitly referred in EASA policy)
- EASA CS 25 (as it can be inferred from the policy for an RPAS the size of a Single Aisle)
- AMC-RPAS.1309_Issue-1 (and AMC-RPAS.1309_Scoping-Paper_Issue-1)
- EASA CS AWO (at least partly)
- JARUS Guidance on RPAS C2 link RCP (for consolidated document)

In addition, for those topics for which it can be known in the first step of the design that a discussion and agreement needs to be conducted with the authority, due to the specifics of the RPAS concept, a list of "Review Items" or "Issues" will be appended to the baseline. For example, the following topics can be presumed to be open in order to agree on interpretation material:

- RPAS tests for Certification (planning and extent of tests to be conducted);
- Human Factors considerations (specific ergonomic and workload aspects of the ground station);
- Compliance with Airworthiness Requirements to isolate RPAS system from security threats;
- Certification of Software and Complex Digital Devices used on ground stations.
- Relationship with Certification Requirements on ATM applications for the handling of RPAS (for example in case the application envisages that the ATCo could take control of the RPAS in some specific circumstances)
- Relationship with Certification Requirements in other domains for the handling of RPAS (e.g.: MET)

4.5 Compliance Demonstration

The certification plan should give a comprehensive description of how the evidences will be produced that all the regulatory requirements are complied with. This can for example take the form of an assembly of plans shown to be consistent in a Means of Compliance Checklist

The certification plan should also propose an organisation of Certification Deliverables together with their certification status. Depending on this status, the Certification Deliverables are documents that need either to be approved or agreed or received by the authority prior to granting the certificate. They can be considered as the core part of the Certification Plan.

A separate document describing the assumptions coming from other domains and how these are being covered must be part of the document deliverables.

A Functional Hazard Assessment (FHA) will be part of the compliance demonstration in order to analyze which hazards need to be considered. The FHA can be the basis for fixing the Design Assurance Levels. The FHA itself must be a certification deliverable.

Any Human Factors considerations and assumptions that are the result of compliance activities must be compiled in a document in order to be useable in the Continuing Safety activities for personnel training requirements.

It may be convenient that the above points are addressed in a safety document called "Safety Master Document SMD". The SMD details and explain how the safety regulation will be interpreted for RPAS project and gives all the data necessary to perform FHA and safety assessments/analyses required to show compliance with the ARP 4754A/ED79A using the methods recommended in the ARP 4761A/ED135A . If used the SMD should be referenced in the certification plan

4.6 Agreement on the Certification Plan

Early agreement on the Certification Plan and the Means of Compliance with the relevant Authorities is important in order to avoid unnecessary "surprises" during the compliance period

4.7 Continuing Safety activities

Understanding and monitoring how the demonstration of safety will be managed and achieved is of utmost importance for the authority. As a consequence a special focus is to be put in the certification plan on how the ARP standards will be implemented, giving sufficient details on:

- the design organisation and the actors in charge;
- the organisation of safety activities, their inputs and outcomes, how they interface;
- the key documents produced as output of these activities

			A 2 C O S safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	70
Issue:	1.1	Classification:	Restricted

The case occurring, description of safety activities should include safety activities and output documents interfacing with partnering stakeholders.

All these point will be described in the safety plan performed in accordance with ARP4754A/ED79A recommendations. The safety plan will be referenced in the certification plan

4.8 Example outline of a Certification Plan

1. General Description

- 1.1. Overview of Functional Architecture of the AutoFailMS System
- 1.2. Interface with other RPAS Systems
- 1.3. Interface of the AutoFailMS System with other domains

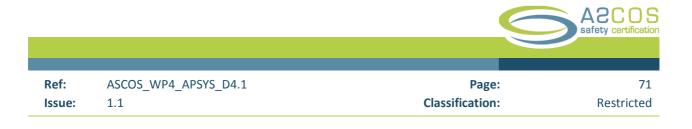
2. Progressive involvement of Authorities (SOI)

- 2.1. On system development activities
- 2.2. On Safety Demonstration activities

3. Applicable Requirements, standards and Related Guidance

- 3.1. Certification Basis (Claims and Argument architecture)
- 3.2. Special Conditions & Issue Papers & Equivalent Safety Findings
- 3.3. Interpretative Material
- 3.4. Listing required tests
- 3.5. Other requirements and reference documents
- 3.6. Means of Compliance checklist
- 3.7Relationship with Certification Requirements in neighboring domains

4. Compliance demonstration


- 4.1. List of Certification Deliverables
- 4.2. Summary of the Functional Hazard Assessment
- 4.3. Determination of the Design Assurance Levels for the change
- 4.4. Compliance deliverables (including assumptions)
- 4.5 Test results
- 4.6. Human Factors considerations

5. Transition requirements

5.1. Transition document

6. Continuing Safety activities

- 6.1. Scope of the Safety activities
- 6.2. Main Safety actors and outputs
- 6.3. Relationship of the AutoFailMS System requirements with the requirements in neighboring domains
- 6.4. Personnel training requirements

5 Stage 4 Specification and Stage 5 Design

5.1 Safety Objectives

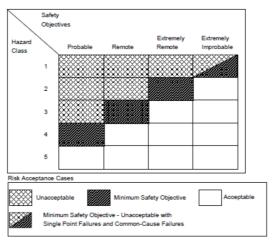
Stage 4 focuses on the behavior of the changed system in the absence of failure and establishes safety objectives on it. This stage identifies the hazards that the system is intended to mitigate (external hazards) and it analyses if the change sufficiently mitigates those hazards. However, as discussed in 3.4.1 this Use Case considers all together the external and the self-failure hazards. The hazards are considered as any potential unsafe situation. Consequently this Use Case addresses together Stage 4 and Stage 5.

The normal, abnormal and failure scenarios have been developed to identify the generic hazards. The proper level of detail to include in the scenarios is a key element to ensure that all the hazards at TAS level have been identified. (Rec_07) In this Use Case:

- The failure scenarios describe as well the impact on the remote pilot (e.g. increase of pilot workload).
- Although the objective of this Use Case is restricted to AutoFailMs, the failure scenarios include explicitly description of combination of AutoFAilMS failure with "C2 failure" or "detect and avoid" failure or "loss of datalink" failure. These combinations of failure can impact on the ATM emergency procedures.

The complete and correct identification of hazards need to be supported by an agreed methodology that common to all TAS stakeholders. In this Use Case the identification of hazards have been performed by analysis the impact of the failures in several domains on several domains.(Rec_06).

Table 13 presents the list of hazards. The hazards have been classified according to three domains:


- Aircraft and AutoFailMS system. (which supports claim 1.1.2.1 and 1.1.3.1 and claim 2.1)
- Remote Pilot. (which supports claim 1.1.3 for remote pilot dependency and claim 2.2)
- ATM (which supports claim 2.3).

Note that the application of current standards implies a close relation between claim 1 and claim 2.

The severity matrix is coherent with to JARUS [9](related to aircraft and on ground) and with ER-010 [16](related to impact of RPAS function on aircraft and on ATM) For this Use Case; the impact on AutoFAilMs is considered as a contributor to the impact on the RPAS. The final severity allocated to the hazards is the worst of the severity considered in aircraft and ATM domain. The final severity has been expressed as CAT, HAZ, MAJ, so on. Note that the ER-010 avoids any kind of equivalence between severity classes and classical CAT, HAZ, etc. Each severity implies a safety objective (qualitative and quantitative).

The final severity has been expressed as CAT, HAZ, MAJ, so on. Note that the ER-010 avoids any kind of equivalence between severity classes and classical CAT, HAZ, etc. Each severity implies a safety objective (qualitative and quantitative):

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	
Issue:	1.1	Classification:	Restricted

The quantitative safety objective can be defined by a severity table:

Table 11 Risk acceptance cases [17]

For this use Case, it is suggested that the quantitative safety objective associated to each hazard is:

Severity	Probability	
CAT	Extremely improbable	
HAZ	Extremely remote	
MAJ	Remote	
MIN	Probable	

Table 12 Safety objectives

The qualitative objective, for this Use Case, is understood in a similar way as per CS25 1309 AMC for Fail Safe requirement for Catastrophic Failure Conditions and as per ARP 4754A/ED79A for DAL assignment. The DAL objective is the level of confidence, that errors in requirements, design and implementation have been considered and mitigated. Refer to Rec_02

The list of hazards, the safety impacts and the severity is summarized in Table 13

Restricted

Ident	name	Effect on RPAS (aircraft level)	Effect on Air Crew (remote pilot)	Effects on Air Traffic Service	Final severity
GEN_HAZ_1	slight increase of controller workload	N/A	N/A	Class IV according to ER-010	MIN
GEN_HAZ_2	significant increase of controller workload	N/A	N/A	Class III according to ER-010	MAJ
GEN_HAZ_3	large increase of controller workload	N/A	N/A	Class III according to ER-010	MAJ
GEN_HAZ_4	slight increase of pilot workload	N/A	MIN as per JARUS Class IV according to ER- 010	N/A	MIN
GEN_HAZ_5	significant increase of pilot workload	N/A	MAJ as per JARUS Class III according to ER- 010	N/A	MAJ
GEN_HAZ_6	large increase of pilot workload	N/A	HAZ as per JARUS Class III according to ER- 010	N/A	HAZ
GEN_HAZ_7	Loss of RPAS C2 link No loss of datalink ATC. RPAS controlled by AutoFailMS	MAJ. Failure conditions that would reduce the capability of the RPAS or the ability of the remote crew to cope with adverse operating conditions to the extent that there would be a significant reduction in functional capabilities.	N/A pilot cannot control the RPAS	AutoFailMS managed the RPAS, detect and avoid function is not lost. FP 1 Class V as per ER-010 However it is expected that situation might increase controller workload. Class IV.	MAJ
GEN_HAZ_8	loss of RPAS communication no loss of C2 RPAS controlled by AutoFailMS	MAJ. Failure conditions that would reduce the capability of the RPAS or the ability of the remote crew to cope with adverse operating conditions to the extent that there would be a significant reduction in functional capabilities.	Increase on pilot workload as part of pilot duties. MIN. Pass to voice communication	It is expected that situation might increase controller workload. Class IV.	MAJ

Ref:

Issue:

1.1

ASCOS_WP4_APSYS_D4.1

Classification:

Ref:

Issue:

1.1

ASCOS_WP4_APSYS_D4.1

Restricted

Ident	name	Effect on RPAS (aircraft level)	Effect on Air Crew (remote pilot)	Effects on Air Traffic Service	Final severity
GEN_HAZ_9	Loss of RPAS communication and C2. RPAS controlled by AutoFailMS	HAZ Loss of the RPA where it can be reasonably expected that a fatality will not occur The RPAS does no send reports although it is controlled by AutoFailMS and it is reasonable to expect that it follows last flight plan update.	N/A pilot cannot communicate with the RPAS	AutoFailMS managed the RPAS, detect and avoid function is not lost. FP 1 Class V as per ER-010 However it is expected that even if the RPAS cannot report its position (loss of datalink) so the controller will probably need deviate aircraft in the vicinity Class III	HAZ
GEN_HAZ_10	Loss of AutoFailMS (pilot revert to manned mode)	MAJ significant reduction in functional capabilities.	Increase on pilot workload as part of pilot duties. MIN.	Remote pilot manages the RPAS, detect and avoid function is not lost. FP 1	MAJ
GEN_HAZ_11	Total loss of RPAS control (no AutoFailMS and no pilot)	CAT Failure conditions that could result in one or more fatalities.	N/A pilot cannot communicate with the RPAS	Total loss of RPAS control. RPAS is not supposed to follow last flight plan update. It is supposed to have detected and avoid function operative. Class II	CAT
GEN_HAZ_12	loss of adherence to flight plan	NSE failure conditions that would not affect the operational capability of the RPAS	MIN, slight increase of pilot workload As per JARUS	MIN slight increase in remote crew workload, such as flight plan changes. As per JARUS Class V as per ER-010	MIN
GEN_HAZ_13	Slight Reduction in separation assurance	MIN slight reduction separation assurance.	MAJ failure condition has a significant increase in remote crew workload	Class II as per ER-010 (or class III)	MAJ
GEN_HAZ_14	Large reduction of separation	MAJ significant reduction in separation assurance.	MAJ e failure condition has a significant increase in remote crew workload	Class II as per ER-010	MAJ
GEN_HAZ_15	Total loss of separation	HAZ large reduction in safety margins	MAJ e failure condition has a significant increase in remote crew workload	Class II as per ER-010	HAZ

Ref:ASCOS_WP4_APSYS_D4.1Page:75Issue:1.1Classification:Restricted			ASCOS safety certification
		_	

Ident	name	Effect on RPAS (aircraft level)	Effect on Air Crew (remote	Effects on Air Traffic Service	Final
			pilot)		severity
GEN_HAZ_16	loss of collision	HAZ large reduction in safety	HAZ large increase of pilot	FP 1 no collision avoidance. Class I	HAZ
	avoidance	margins	workload. Pilots needs to		
			avoids collision		
GEN_HAZ_17	missed approach	NSE failure conditions that would	MIN slight increase in	At worst class III, Significant increase of	MAJ
		not affect the operational capability	remote crew workload	air traffic controller that needs to	
		of the RPAS		separate other traffic.	
GEN_HAZ_18	landing emergency site	NSE failure conditions that would	MIN slight increase in	At worst class III,	MAJ
		not affect the operational capability	remote crew workload	Significant increase of air traffic	
		of the RPAS		controller that needs to separate other	
				traffic.	

Table 13 Generic hazard. Safety effects on several domains

The safety objectives (both in terms quantitative and qualitative) need to be cascaded to each of the stakeholder. Once it is agreed which is the safety contribution of each stakeholder to the safety objective, it is possible to properly allocate safety requirements.

For the purpose of this Use case, the following methodology is proposed:

5.1.1 Safety Objectives

Note that in this Use Case, there is not external hazards (refer to 3.4.1) the hazards are related to failure of the RPAS system, the RPAS when working normally is conceived to be transparent for ATM and the remote pilot is not expected to manage failure conditions. For this use Case, it has been suggested that the safety objectives are allocated to the RPAS and to the AutoFailMs, and therefore, they are met by ARP 4754A/ED 79A regulation.

- It is suggested in this Use Case that the quantitative overall safety should not be less demanding than current regulation of aircraft. Refer to JARUS [9] and Table 57
- It is suggested in this Use Case that the qualitative safety objective should not be less demanding than current regulation for aircraft (DAL A/CAT, DAL B/HAZ, so no) Refer to JARUS [9] and Table 59.

As a result, the safety objectives depend on isolation of the RPAS.

Note as well that the ATM requirements have been included in the ARP 4754_A. In normal or failure conditions, the RPAS needs to be compliant with the requirements (safety and performance) from the ATM (Refer 3.5.3). As an example, let us to take the "missed approach". This hazard is classified MIN in current regulation. , however, using a Total Aviation System severity table, this hazard has been classified MAJ (refer Table 14). The RPAS needs to achieve the MAJ objective in qualitative and quantitative terms.

In case of AutoFAilMS failure, the ATM might perform certain procedures (e.g. emergency procedures). Some of these emergency procedures are associated to a safety net triggering.

It has been mentioned that the current regulation does not totally addresses the allocation of quantitative requirements over human, (e.g. pilot). For the AutoFailMS, the interface of the system with the pilot is managed as currently (inputs of SSA to AFM and FCOM) and involvement of human factor team. The Rec_10 can be plugged in the claim 2.3.

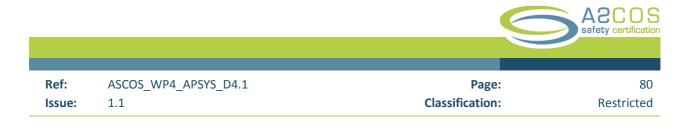
As a result, this Use Case concludes that the safety objectives agreed among all stakeholders could be allocated only by RPAS if the current regulation is developed to include ATM requirements and develops the concept of Human DAL). The ATM emergency procedures are seen as a consequence of a triggering of an ATM or RPAS safety net.

			Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	77
Issue:	1.1	Classification:	Restricted

Ident	name	Final	comment	Safety objective quantitative	Safety objective qualitative
		severity			
GEN_HAZ_1	slight increase of controller workload	MIN	The increase of workload caused by a failure on the RPAS operation due to an AutoFailMS has only one contributor the RPAS operations.	The contribution of AutoFailMS system to an The RPAS failure modes implying an slightly increase of controller workload shall be compliant in E-03/FH objective	Functions of AutoFailMS whose failure might imply an slight increase on the workload of the controller should be developed at least in DAL D:
GEN_HAZ_2	significant increase of controller workload	MAJ	The increase of workload caused by a failure on the RPAS operation due to an AutoFailMS has only one contributor the RPAS operations.	The contribution of AutoFailMS system to The RPAS failure modes implying a significant increase of controller workload shall be complainant the E- 05/FH objective.	Functions of AutoFailMS failure modes implying a significant increase of controller workload shall be developed in DAL D
GEN_HAZ_3	large increase of controller workload	MAJ		The contribution of AutoFailMS system to an RPAS failure modes implying a large increase of controller workload shall be compliant the E-05/FH objective	Functions of AutoFailMS failure modes implying a large increase of controller workload shall be developed in DAL C
GEN_HAZ_4	slight increase of pilot workload	MIN		The contribution of AutoFailMS system to an the RPAS failure modes implying an slightly increase of pilot workload shall be compliant the E-03/FH objective	Functions of AutoFailMS whose failure might imply an slight increase on the workload of the pilot should be developed at least in DAL D:
GEN_HAZ_5	significant increase of pilot workload	MAJ		The contribution of AutoFailMS system to a failure modes implying a significant increase of pilot workload shall be compliant the E-05/FH objective.	Functions of AutoFailMS failure modes implying a significant increase of pilot workload shall be developed in DAL C
GEN_HAZ_6	large increase of pilot workload	HAZ		The contribution of AutoFailMS system to an RPAS failure modes implying a large increase of pilot workload shall be compliant the E-07/FH objective	Functions of AutoFailMS failure modes implying a large increase of pilot workload shall be developed in DAL B

Restricted

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1


Classification:

Ident	name	Final	comment	Safety objective quantitative	Safety objective qualitative
		severity			
GEN_HAZ_7	Loss of RPAS C2 link No loss of datalink	MAJ.		The contribution of AutoFailMS system to and the RPAS failure modes implying	Functions of AutoFailMS failure modes implying a loss of auto C2 shall be
	ATC. RPAS			a loss of auto C2 shall be compliant the E-05/FH objective.	developed in DAL C
	AutoFailMS				
GEN_HAZ_8	loss of RPAS communication no loss of C2 RPAS controlled by AutoFailMS	MAJ	The loss of datalink communication depends on the ATC and on the RPAS. The allocation of safety objective to each stakeholder might follow the ED-78A. ED-78A is	The contribution of AutoFailMS system to and the RPAS failure modes implying a loss of datalink communication shall be compliant the E-05/FH objective.	Functions of AutoFailMS failure modes implying a loss of datalink communication shall be developed in DAL C
GEN_HAZ_9	Loss of RPAS communication and C2. RPAS controlled by AutoFailMS	HAZ	coherent with ARP 4754A/ED79A. Combination of failure modes, refer to GEN_HAZ_7 and GEN_HAZ_8		
GEN_HAZ_10	Loss of AutoFailMS (pilot revert to manned mode)	MAJ		The contribution of AutoFailMS to failure modes implying the loss of AutoFailMS shall be compliant with the E-05/FH objective.	The function of AutoFailMS whose failure mode implies the loss of AutoFailMS shall be developed in DAL C
GEN_HAZ_11	Total loss of RPAS control (no AutoFailMS and no pilot)	САТ		The contribution of AutoFailMS to the total loss of RPAS shall be compliant the E-09/FH objective.	Functions of AutoFailMS failure modes implying a total loss of RPAS shall be developed in DAL A
GEN_HAZ_12	loss of adherence to flight plan	MAJ		The contribution of AutoFailMS to failure modes implying the loss of adherence to flight plan compliant the E-05/FH objective.	The contribution of AutoFailMS to failure modes implying the loss of adherence to flight plan shall be developed in DAL C

		C	ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	79
Issue:	1.1	Classification:	Restricted

Ident	name	Final	comment	Safety objective quantitative	Safety objective qualitative
GEN_HAZ_13	Slight Reduction in separation assurance	severity MAJ		The contribution of AutoFailMS to failure modes implying a slight loss of separation shall be compliant with the E-07/FH objective.	The contribution of AutoFailMS to failure modes implying a slight loss of separation shall be developed in DAL B
GEN_HAZ_14	Large reduction of separation	MAJ		The contribution of AutoFailMS to failure modes implying a large loss of separation shall be compliant with the E-07/FH objective.	The contribution of AutoFailMS to failure modes implying a large loss of separation shall be developed in DAL B
GEN_HAZ_15	Total loss of separation	HAZ		The contribution of AutoFailMS to failure modes implying a total loss of separation shall be compliant with the E-07/FH objective.	The contribution of AutoFailMS to failure modes implying a loss of separation shall be developed in DAL B
GEN_HAZ_16	loss of collision avoidance	HAZ		The contribution of AutoFailMS to failure modes implying a loss of collision avoidance shall be compliant with the E-07/FH objective.	The contribution of AutoFailMS to failure modes implying a loss of collision and avoidance shall be developed in DAL B
GEN_HAZ_17	missed approach	MAJ		The contribution of AutoFailMS to failure modes implying a missed approach shall be compliant with the E- 05/FH objective.	The contribution of AutoFailMS to failure modes implying a missed approach shall be developed in DAL C
GEN_HAZ_18	landing emergency site	MAJ		The contribution of AutoFailMS to failure modes implying a landing on emergency site shall be compliant with the E-05/FH objective.	The contribution of AutoFailMS to failure modes implying a landing on emergency site shall be developed in DAL C

Table 14 Generic hazard. Safety objectives

5.1.2 Safety requirements

This Use case has defined some requirements from normal, abnormal and failure scenarios. The process of extracting requirements is not a standardized process. Refer to Rec_08 Note that these safety requirements do not provide complete a correct set of safety requirements

Requirements for AutoFailMS (system level)

utoFailMS shall provide information of aircraft status to remote pilot	
utoFailMS shall detect failure conditions	
utoFailMS shall manage failure conditions according to autonomy level	
utoFailMS shall inform to the remote pilot of a failure condition according to type of failure	
utoFailMS shall inform to the ATC of a potential deviation from intended flight plan (depending on	
utonomy level)	
utoFailMS shall guide the RPAS to a landing site	
utoFailMS shall execute a missed approach	
utoFailMS shall detect the loss of AutoFailMS	
AutoFailMS shall detect the erroneous AutoFailMS, then AutoFailMS disconnects	

Table 15Requirement for AutoFailMS (system level)

Requirement for RPAS

Ident	description
Req-21	Aircraft system shall detect the total loss of AutoFailMS (BITE system)
Req-28	Aircraft system shall detect the erroneous of AutoFailMS (BITE system) then AutoFailMS disconnects
Req-34	Loss of C2 link shall be designed according to DAL A (application of ARP4754A/ED79A)
req-60	RPAS system shall ensure that there is not any single cause implying an spurious failure detection and
	a faulty C2 (common mode)
Req-61	RPAS system shall ensure that there is not any single cause implying an spurious failure detection and
	a faulty "detect and avoid" (common mode)
req-70	RPAS system (CDS) shall informs to the remote pilot of the autonomy level
Req-71	RPAS system shall inform to the remote pilot of the modification of autonomy level
req-80	After loss of datalink voice shall be designed as a back up

Table 16Requirement for RPAS

Requirement for the remote pilot

Ident	description	
Req-5	Remote pilot shall manage the failure according to autonomy level	
Req6	Remote pilot shall inform to the ATC of a potential deviation from intended flight plan (depending on autonomy level)	
Req-10	Remote pilot shall guide the RPAS to a landing site	
Req-12	Remote pilot shall execute a missed approach	
Req-22	Remote pilot shall revert to manned mode after the loss of AutoFailMS	

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

Ident	description
Req-24	The remote pilot shall pilot the RPAS in manned mode for a certain time (maximum time to be decided
	with human team)
Req-26	Remote pilot shall disengage the AutoFailMS and passes to manned mode after detection of
	erroneous AutoFailMS
Req-81	Trajectory modifications shall be validated by the remote pilot

Table 17Requirement for the remote pilot

Requirements for ATC

The requirements on the ATC are no necessary to meet the safety objective. Refer to 5.1.1

Ident	description
REq-8	Controller shall check the impact of a potential deviation of RPAS on the ATM
Req-31	ATC shall define procedure for uncontrolled RPAS (e.g. divert traffic around)
Req-32	ATC shall define procedure for disappeared RPAS (e.g. divert traffic around, inform authorities)
Req-33	ATC shall define procedure for RPAS after collision and avoidance loss (e.g. divert traffic around)
Req-40	ATC shall define procedure for uncontrolled RPAS (e.g. divert traffic around) in TMA
Req-41	ATC shall define procedure for disappeared RPAS (e.g. divert traffic around, inform authorities) in TMA
Req-42	ATC shall define procedure for RPAS after collision and avoidance loss (e.g. divert traffic around) in
	ТМА
Req-50	ATC shall define procedure to contact remote pilot in case of abnormal RPAS behaviors
Req-82	ATM shall define a "maximum" level of RPAS allowed in certain airspace.
Table 188 equirement for Requirements for ATC	

Table 18Requirement for Requirements for ATC

Requirement for maintenance

Ident	description
Req-25	Maintenance Activities shall address the MTBF for the hidden failure "undetected loss of AutoFailMS"
Req-30	Maintenance Activities shall address the MTBF for the hidden failure "loss of automation mode"

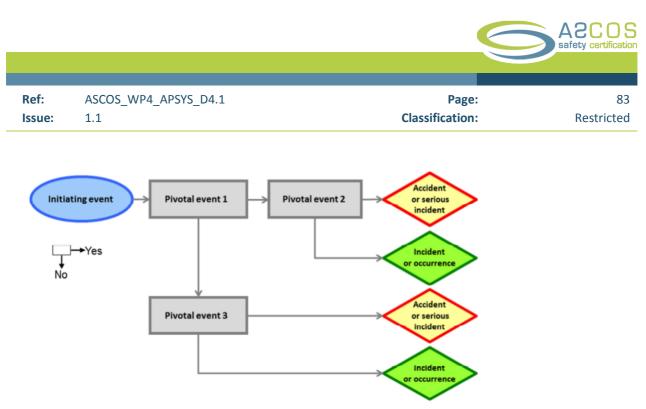
Table 19Requirement for Requirements maintenance

5.2 Safety objectives and safety requirements using WP 3 techniques

The allocation of safety objectives only to the RPAS stakeholder simplifies the justification of claim 1 and claim 2. However, the objective of ASCOS is to create a common certification approach. It is possible to "share" the safety objective among several stakeholders. The D1.3 should include a task to cascade quantitatively and qualitatively safety objectives to the TAS stakeholders refer to Rec_03.

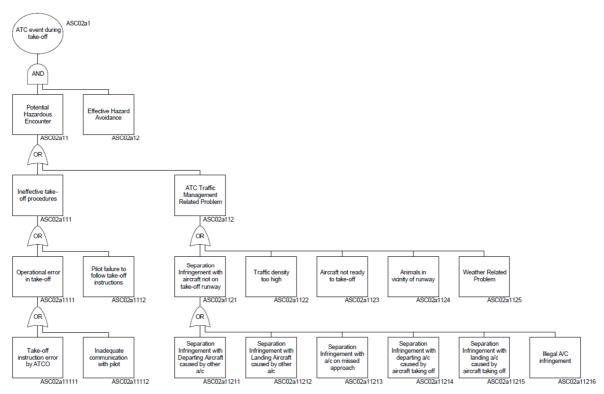
Let us take the case of "**total loss of separation**". It has been assessed HAZ and therefore the probability is "extremely remote". The TAS stakeholders need to agree with authorities what "extremely remote" means for this specific case. Currently "Extremely Remote" means E-07/FH (see ARP4754A/ED79A)., This objective is cascaded to the stakeholders:

5.2.1 The cascading of quantitative safety objectives to several stakeholders is coherent with the design.


The safety objective E-07/FH is achieved by RPAS E-06/FH AND E-01 ATM. In this case, stakeholders needs to analyze interface to ensure that the "AND" tree is coherent with the design. If there is a single failure that causes a total loss of separation in the RPAS and as well loss of separation assurance in the ATM, then the design needs to be updated or the "AND" tree is not correct. As an example, the Flight Management system of the RPAS is erroneous ant it can no longer manage the flight plan. The AutoFailMs (no failure) detects it and communicates it to remote pilot who passes to manned mode. But the remote pilot cannot assure the separation because the trajectory calculated by the Flight Management System is incorrect. The remote pilot cannot ensure the adherence to flight plan nor the separation, the ATM does not know the flight plan then ATM cannot ensure the separation

The interface between the ATM and the RPAS has created a common mode failure. The RPAS, the remote pilot and the ATM shares the same trajectory updates. In case of erroneous trajectory updates the remote pilot cannot be the backup of the RPAS, nor the ATM can divert the traffic.

In the previous approach (refer to 5.1) the hazards are mitigated only one RPAS (e.g. independent trajectory calculators), and the ATM is seen as a safety net. In this approach, however, the stakeholders needs to ensure that there is no common mode failure in the design that might impair the safety objective allocation


This level of analysis is performed on stage 7 of D1.3 [1] and it is out of the scope of this safety Case. However, let us see how the methodology proposed by WP 3.2 [18] can provide relevant safety inputs to the safety practitioners.

The ESDs proposed by WP 3.2 [18] consider contribution of several stakeholders to the same end state by the use of ESD, the ESD represents the architecture of a system and the interfaces among stakeholders. ESDs are a graphical representation of stage 1 of D1.3 and they are composed by initiating event, pivotal events and the end element. An initiating event represents the start of the accident scenario, the pivotal element represent safety barriers that can avoid the accident and the end event stats the final outcome. The safety practitioner can impose a failure rate (safety objective) to the end state. The safety objectives need to be coherent with context--C02.

Each element is fed by a fault tree that represents the design. The fault trees can be quite complex and they include contributors referred to different stakeholders. It is possible them to find a common contributor to the initiating event and to the pivotal events.

Figure 11 Fault tree

The safety objective allocated to the end element can be cascaded to the fault tress and allocated to the stakeholders coherently with the design structure.

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	84
Issue:	1.1	Classification:	Restricted

5.2.2 The cascading of qualitative safety objectives to several stakeholders is coherent with the design

The allocation of safety requirements only to the RPAS as proposed in approach proposed in 5.1 allows to ensure the qualitative objective by means of DAL (refer to 3.5.1) However if the safety objectives are supported by several stakeholders, it is necessary to agree the same or coherent level of quality development. The ARP4754A/ED79A methodology addresses the concept of develop assurance level depending on the design.

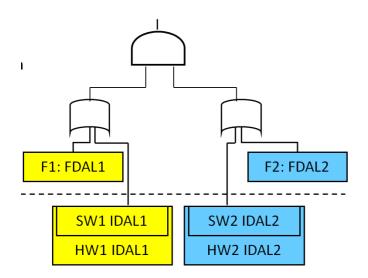


Figure 12 DAL cascading in independent systems

The ESD proposed in WP 3.2 might be tailored to allocate quality development in a similar way than the process followed on aircraft.

5.3 Conclusion

The safety impact of each hazard has been analyzed for the Total Aviation System and associated to a severity; the worst severity has been retained. The safety objective has been expressed in qualitative and quantitative terms depending on the severity, it has been decided that the RPAS meets in isolation the safety objective and the ATC provides safety net in case of failure.

This stage presents a list of safety objectives, safety requirements and degree of assurance (DAL) for the RPAS operations assisted by AutoFailMS.

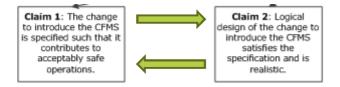
6 Stage 6 : Update of argument

The study of the impact on AutoFailMS in the RPAS operations imply the following modification on the certification argument as presented on stage 2

CO-2 Level of safety defined as per severity matrix

This use Case has defined a common severity matrix that classifies the severity of the hazards. The TAS stakeholders are supposed to agree on both the severities and the safety objectives (in term of qualitative a quantitative).

The CO-2 is achieved by imposing safety objectives to the RPAS in isolation. These safety objectives are coherent with current draft regulation on UAV (JARUS and ER_010). This approach, to impose the safety objectives to one single stakeholder (the RPAS) allows that the safety argument can be justified by current regulation and practices.


This Use Case has highlighted the necessity of improving the interface of current regulation with ATM and human performance See. Figure 6 and Figure 7

Claim 1 and Claim 2 interrelation

The D1.3 methodology presents five level highlevel claims. This Use Cases addresses only the two firsts claims

Claim 1 express that the change is specified in such way that it complains with the safety objective. Claim 1 does not consider how the AutoFailMS is actually implemented, thus there is no consideration of equipment of human roles (refer to 3.3). Claim 2 express that the logical design satisfies the specification defined in claim 1, claim 2 adresses the architecture of the AutoFailMS.

In the D1.3 methodology claim 1 and claim 2 are presented as independent claims, however note that the introduction of current standards (ARP4754A/ED79A) as means to support the claims, implies that the specification (claim 1) and the logical design (claim 2) are not independent, claim 1 and claim 2 are interrelated.



Claim 1.1.2 can be referred to claim 1.1.1

The analysis of the dependencies of the AutofailMS has shown that claim 1.1.2.2 is not applicable to AutoFailMS dependencies or it is referred to claim 1.1.2.1. This is because the AutoFailMS scope is to mitigate the failure conditions.

AutoFailMs is not expected to mitigate "external hazards" except those hazards related to the scope of the AutoFailMS (and covered in claim 1.1.2.1). Refer to 3.4.2.

The Claim 1.1.2.2 is either non applicable either considered as part of claim 1.1.2.1.Refer to 3.4.2

Figure 13 Update of certification argument

7 Conclusions

7.1 Conclusion Use of D1.3 on RPAS operations supported by AutoFailMS. First Approach

The application of D1.3 methodology to a system installed on an aircraft has identified some recommendations to D1.3.

Ident	Recommendation
Rec_01	D1.3 should propose that Context C0-2 can be expressed by a severity matrix at the level of the Total Aviation System level
Rec_02	D1.3 should set a task for TAS stakeholders agree on the safety objectives imposed for each severity at TAS level
Rec_03	D 1.3 should set a task for Context CO-2 to be completed by a guideline to cascade Safety Objective from TAS to stakeholder level
Rec_04	D1.3 should complete stage 1 by a guideline on production operational, and functional description of the change.
Rec_05	D1.3 should set up a clear activity for the stakeholder to agree on the safety terminology (hazards, safety objective, safety requirements, etc.)
Rec_06	D1.3 should set a task for the TAS stakeholders to agree on a guideline to identify hazards
Rec_07	D1.3 should set an activity for TAS to agree on the proper level of scenarios at TAS level, these scenarios need being updated as long as the design in being detailed.
Rec_08	D1.3 should set a task for the TAS stakeholder to agree on guideline to identify requirements from scenarios.
Rec_09	D1.3 should set a task for the TAS stakeholder to agree on guideline to share requirements from scenarios.
Rec_10	D1.3 should set a task for the stakeholder to agree on a guideline to allocate qualitative requirements to human errors.
Rec_11	D1.3 should define a process to produce lessons learned for future developments
Rec_12	D1.3 should improve the description of the certification argument to address changes at different levels.

Table 20 Conclusion. First approach

7.1.1 Rec_01: D1.3 should propose that Context C0-2 can be expressed by a severity matrix at the level of the Total Aviation System level

Rec_01. D1.3 should propose that Context C0-2 can be expressed by a severity matrix at the level of the Total Aviation System level.

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	88
Issue:	1.1	Classification:	Restricted

In a Total Aviation System, the safety is no longer understood as a performance achieved in isolation by each stakeholder, the safety has become into an overall objective. Therefore, the level of safety needs to be defined at inter-stakeholders level and cascaded to each stakeholder (see chapter 6 WP 3.5 [19]).

This Use Case proposes to define the "acceptable safety level" by a severity matrix. This is coherent with current regulation for ATM and aircraft domain. The severity matrix needs to consider the safety impact of the change in all aviation domains.

- The severity allocated to each hazard is the worst of all severities identified for each of the domains.
- If current standards are used to support claim 2, then, the severity matrix at the level of the TAS needs to be aligned with current regulation.

7.1.2 Rec_02: D1.3 should set a task for TAS stakeholders agree on the safety objectives imposed for each severity at TAS

Rec_02 D1.3 should set a task for TAS stakeholders agree on the safety objectives imposed for each severity at TAS level

The severity associated to each hazard implies a safety objective. See for example the Table 21. TAS stakeholders (see task WP 3.5) needs to agree about the safety objective accepted to each hazard. (see chapter 6 WP 3.5 [19]).

Severity	Probability	
САТ	Extremely improbable	
HAZ	Extremely remote	
MAJ	Remote	
MIN	Probable	

Table 21 Safety objectives TAS level

7.1.3 Rec_03: D1.3 should set a task for Context C0-2 to be completed by a guideline to cascade Safety Objective from TAS to stakeholder level

Rec_03: D1.3 should set a task for Context C0-2 to be completed by a guideline to cascade Safety Objective from TAS to stakeholder level

The agreed safety objectives at the TAS level needs to be met by the aviation stakeholders as a whole. The stakeholder needs to agree (task WP 3.5) in a methodology to share the safety objectives.

- In the case that several stakeholder supports the same safety objective the D1.3 methodology should impose a common mode analysis, in order to ensure the independency of the design of each stakeholder level and at interstakeholder level (e.g. to refine the chapter 2.2.3 in D1.3)
- In the case that stakeholder share a same safety objective the stakeholders design need to be developed under similar levels of quality.

7.1.4 Rec_04 D1.3 should complete stage 1 by a guideline on production operational, and functional description of the change..

Rec_04 D1.3 should complete stage 1 by a guideline on production operational, and functional description of the change.

Stage 1 should be completed with guidelines that enable to each stakeholder to present a complete and correct list of operations, services and function impacted by the change. The operations are achieved by means of functions and services.

Stage 1 should propose the list of scenarios (normal, abnormal and failure) according to the complete list of operation, services and function impacted by the change .

The complete list of operations, services and function should include a clear traceability of stakeholders involved in them. If an operation, service and functions is performed by several stakeholders (e.g datalink) the D1.3 should allow capture the contribution of each stakeholder to the overall objective of the scenario associated to that operation, service and function.

7.1.5 Rec_05 D1.3 should propose TAS stakeholder needs to agree about terminology.

Rec_05 D1.3 should set up a clear activity for the stakeholder to agree on the safety terminology (hazards, safety objective, safety requirements, etc.)

As stated in 3.4.1, this Use Case has identified that the definition of hazards might be different on the aviation domains and other stakeholder domains. D1.3 should set up an activity for the TAS to agree on the terminology.

This is as well the case of the abnormal scenarios, as stated in 3.2.1.1.3 the definition of an abnormal scenario might be not the same for all stakeholders. The definition of the operational concept should clearly identify what a normal and abnormal scenario is (Rec_04). If current standards are used to support claim 2, the definition of normal and abnormal should be traceable with current standards (see Rec_05).

If claim 2 is supported by current standards, then, the agreed terminology at the TAS level need to be coherent with the terminology used in the standards.

7.1.6 Rec_06 D1.3 should set a task for the TAS stakeholder to agree on a guideline to identify hazards.

Rec_06 D1.3 should set a task for the TAS stakeholders to agree on a guideline to identify hazards

The guideline D1.3 should be completed by a guidelines to define hazards. The hazards need to be referenced to the Operational concept defined in stage1. The TAS stakeholder needs to agree in the guidelines about identifying hazards. (see chapter 6 WP 3.5 [19]).

If claim 2 is supported by current standards, then the guidelines defined for identifying hazards needs to be coherent with those standards.

A complete and correct list of hazards depends on a complete and correct operation concept in stage 1 (rec-4), an agreed definition of hazards (see rec-5) and guidelines to identify hazard tailored to that hazard definition.

7.1.7 Rec_07 D1.3 should define the level of the scenarios

Rec_07 D1.3 should set an activity for TAS to agree on the proper level of scenarios at TAS level, these scenarios need being updated as long as the design in being detailed.

As stated in 3.2.1.1.2 this Use Case has identified that the required level of the scenarios might differ depending on the stakeholders. In the case that the aircraft used the ARP4754A/ED79A the level of the scenario will probably lower than required by an ATM partners (note that ARP 4754A/ED79A imposes requirements to design).

It is recommended that the level of the scenarios was agreed by TAS according to stage 1, but updated as long as the standards are applied.

Scenarios description should be considered as an iterative activity until the total application of the D1.3 methodology.

7.1.8 Rec_08 D1.3 should set a task for the stakeholder to agree on a guideline to identify requirements

Rec_08 D1.3 should set a task for the TAS stakeholder to agree on guideline to identify requirements from scenarios.

The D1.3 should be completed by guidelines to define requirements. The requirements need to be referenced to the Hazards. (see chapter 6 WP 3.5 [19]).

If claim 2 is supported by current standards, then the guidelines defined for identifying requirements needs to be coherent with those standards.

7.1.9 Rec_09 D1.3 should set a task for the stakeholder to agree on a guideline to share requirements

Rec_09 D1.3 should set a task for the TAS stakeholder to agree on guideline to share requirements from scenarios.

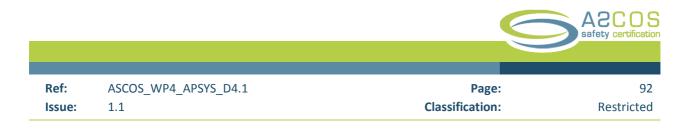
When a safety objective is supported by several stakeholders, the safety requirements need to be share by stakeholders as well. D1.3 should set a task for the stakeholder share requirements. (see chapter 6 WP 3.5 [19]).

If current standards are used to support claim 2, the requirements in interface (req imposed from one stakeholder to other) need to be coherent with the standards of the stakeholders in interface.

As an example see how ATM requirements (performance and safety) can be allocated over aircraft. Figure 8 and Figure 9) and how the aircraft might impose requirements to the ATM.

7.1.10 Rec_10 D1.3 should set a task for the stakeholder to agree on a guideline to allocate requirements to humans

It has been noted that there is a gap in current regulation regarding the human in the system. The D1.3 should define a task for stakeholder to agree a common guideline to create requirements on the human (remote pilot, controller).


7.1.11 Rec_11 D1.3 should define a process to produce lessons learned for future developments

The methodology proposed does not define any process to improve the claim structure D1.3 should define. a feedback loop to improve the claim argument using a continuous improvement process from lessons learned from operation. (see chapter 6 WP 3.5 [19])

7.1.12 Rec_12: D1.3 should improve the description of the certification argument at different levels.

The methodology D1.3 has not fully addressed the safety issues of the implementation of an AutoFailMs in the TAS. In part, this is because the introduction of AutoFailMS is only part of the change (which is to introduce an RPAS). As stated in 3.2.1.1.2 the level of the change (change in one single stakeholder) has driven a too low level of scenarios to support claim2. The methodology D1.3 might not be necessary for a change restricted to one single stakeholder; the critical question to answer is whether the impact of the change extends beyond a single domain on the TAS. If the D1.3 methodology is used to address low level changes for a single stakeholder, then D 1.3 should provide a clear traceability between stage 7 and stage 9 and higher stages.

Note that a big change (RPAS operations) might be enabled by lower level changes (AutoFailMs implementation), the certification plan at a high level (e.g certification argument for TAS) can be supported by certification plans at smaller level (AutoFail Ms compliance with ARP 4754/ED-79).

7.2 Conclusion. D1.3 used to develop ED-78A.Second Approach

As presented in 1.2 the approach D 1.3 [1] is applied by a stakeholder group10 to gather specifications and supporting material. This may involve developing new specifications where functions and / or interfaces are not covered in existing specifications. The application of the D1.3 to the RPAS operations has pointed out that connection between ATM and aircraft standards needs to be reinforced. (refer to 3.5.2 and 3.5.3).

In this subchapter, the D1.3 is used as a guide to develop the ED-78A, (currently restricted to data link application) to apply to any kind of change in the TAS.

The D1.3 presents the main ideas to develop a logical argument that can be applied to address to operation, processes and services in the TAS. On the contrary, the ED-78A is focused in a much more restricted scope, ED-78A presents a guideline to establish operational, safety, performance, and interoperability requirements on data link applications"[17]. However, the ED-78A presents a methodology to share safety and performance requirement among several stakeholders and it has been already used to develop regulations, for example FANS application in ED-120 and ED122 based on ED-78A.

In the first subchapter, we compare the stages proposed by D1.3 with the steps proposed by ED-78A. The objective is to analyze if the overall structure of ED -78A would allow it to be updated to cover as well operation, processes and services. This comparison is performed at high level. Refer to 7.2.1

The application of D1.3 to the RPAS operation supported by the AutoFailMS has produced a certain quantity of recommendations (refer to 7.1). Mainly the recommendations addresses the fact that the introduction of standards in the certification argument structure induce some issues (REC_01, Rec_02, REC_05, REC_06) and the necessity of D1.3 to detail inter stakeholders activates (REC_03, Rec_04 rec_07, rec_08 and rec_09) Some of these recommendation can be as well applicable to ED-78A. The second subchapter analysis on one hand, how the ED-78A interface with the current standards and secondly how the ED-78A manages safety activities inter-stakeholder.

7.2.1 High level comparison between ED-78A and D1.3

The Table 22 shows the main activities of D1.3 and establishes a parallelism with main section in ED-78A.

¹⁰Stakeholder group: to be understood as a group of industrial and operational partners developing RPAS products and operations (aircraft manufacturers, RPAS operators, ANSPs, maintenance and training organizations, etc)

			Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	93
Issue:	1.1	Classification:	Restricted

Aspects covered in D1.3[1]	Link with covered in ED-78A[17]	Comparison D1.3 vs. ED-78A
Stage 1: Description of the change	The description of the change is mainly addressed in the	The OSED description of ED-78A supported by the
This step is focused in describing the changes	OSED (The evidence for coordinated requirements	guideline OSEIC matches the step 1 "description of the
and the main impact in safety, as well as the	determination is a description of operational services and	change". The guideline proposed to develop the OSED
applicable regulation This steps identifies as	their intended operating environments in an operational	(OSEIC) is tailored to datalink applications. At high level,
well involved stakeholders and its role in the	services and environment description (OSED). The ED-78A	the ED_78A addresses the activities proposed on stage 1
change . [1]	proposes a process to capture elements related to all	of D1.3
	stakeholders, this process is called OSEIC.	
	The impact on the applicable regulation is addresses in	Stage 1 identifies as well applicable regulation. Refer to
	section "for approval planning"	Stage 3 of this table.
Stage 2 :Certification argument	The ED-78A does no present a certification argument per	At a high level comparison, the ED-78A presents an
This stage is focused on developing the initial	se. Ed-78A establishes a process to follow that covers	argument which is comparable to the argument
certification argument which will be made for	from the design to operations and that is addressed to	structure of D1.3 presented in §3.4.1 3 "Change
the change. At this stage the argument should	several stakeholders.	between performance-based and compliance-based or
identify any potential impact either on or from		vice versa"
existing assurance contracts or modules	The assurance contracts are managed by allocation of	The ED-78A covers both performance and safety
outside the initial scope of the change. []The	safety objectives and requirements to partners (OSEIC,	requirements together and it cannot be considered as a
architecture will follow existing established	OSA, OPA, IA activities.) and by ensuring that the	"pure-compliance based approach"
certification approaches where these remain	requirements responds to the certification.	
appropriate while ensuring that any		Rec_ED_78_A.1: ED_78A should clearly expose the
consequences of using this approach are fully	The assurance contracts are updated when required.	interfaces among stakeholders and the allocation of
understood and managed [1]		safety requirements
Stage 3 Develop and agree certification plan	Stage 3 of D1.3 is similar to Section 3 of ED-78A.	ED-78A bases the approval planning on the existing
	"Approval planning" The evidence for approval planning is	regulation, in case that there is not regulation, the ED-
The role of the certification plan is to show	the approval plan and the acceptance of the plan by the	78A suggests that: "In cases where there is no regulatory

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	94
Issue:	1.1	Classification:	Restricted

Aspects covered in D1.3[1]	Link with covered in ED-78A[17]	Comparison D1.3 vs. ED-78A
how the certification argument architecture	approval authority [17]	basis for a particular element of the CNS/ATM system,
will be developed and		the regulatory requirements refer to those requirements
substantiated with evidence to the point		established by the stakeholder responsible for
where it can be presented for acceptance by		development and qualification of the element." [17]
the relevant authorities[1]		The ED-78A does not foresee any procedure to develop
		in common regulatory requirements at the level of the
		TAS when missing. This is coherent with the scope of the
		ED-78A.
		Rec_ED_78_A.2: ED_78A should define an activity to
		stakeholders develop new specifications where
		functions and / or interfaces are not covered in existing
		specifications.
Stage 4 Specification	ED-78A includes the process of identification of safety	The Ed-78A is focused on datalink communication, the
This stage is focused on demonstrating that []	objectives and requirements in the section 4 called	objective of the datalink is to support communication
the change is specified to achieve an	"coordinated requirements demonstration".	and not to mitigate a pre-existing hazards. (see 3.4.1)
acceptable level of safety. [1] Safety		consequently, stage 4 is not applicable directly in ED-
assessment in this stage is used to identify the	This section establishes requirements that require	78A. Stage 4 can be comparable however to the OPA
pre-existing hazards relevant to the system and	coordination among organizations involved in the	"The OPA provides methods to derive or validate
assesses the consequences of these hazards on	development, qualification, operation, and approval of	required communication performance type (RCP type)
the safety of the TAS. [1]	the CNS/ATM system. It consists of the OSEIC (refer to	from the OSED, based on the RCP concept."
Stage 5:Design	stage 1 of this table) , OSA, OPA, and the IA. [17]	
This stage is focused on demonstrating [] that		Note as well that ED-78A addresses the performance
the logical design for the change satisfies the	The OSA, OPA, and IA identify, coordinate, allocate, and	and the safety requirement as part of the same process
specification derived within Claim 1 of stage 2.	validate the operational, safety, performance and	similarly to ARP 4754A/ED79A (refer to Figure 6). The

			Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	95
Issue:	1.1	Classification:	Restricted

Aspects covered in D1.3[1]	Link with covered in ED-78A[17]	Comparison D1.3 vs. ED-78A
This stage identifies hazards resulting from	interoperability requirements, and update the OSED, as	ED-78A considers that the implementation of the
failures of the system and produces a set of	necessary. The operational, safety, and performance	change might impact on the OSA, OPA and IA, this is line
Design Safety Requirements (DSRs) which	requirements provide the operational basis for the	with Figure 7
define what each element of the design has to	operational implementation and are captured in the SPR	
do, in terms of functionality and performance,	standard. [17]	
in order to mitigate these hazards[1]		
Stage 7 Implementation	The interoperability requirements provide the	
This stage is focused on demonstrating [] that	technological and functional basis for the operational	
the physical implementation of the logical	implementation and are captured in the INTEROP	
design for the change is complete and correct.	standard. The requirements in the standards are allocated	
The principle aim of safety assessment at this	to each of the stakeholders in control of or responsible for	
stage is to demonstrate by a combination of	an element of the CNS/ATM system[17]	
analysis and testing, that the (as-built) system		
meets the safety requirements . [1]	The section 4 of the ED_78A covers the stage 4, 5 and 7	
	for the datalink application.	
Stage 6 Refinement of Argument	The Ed-78A considers updating the requirements and the	Refer to comments on stage 2 of this table
Following the detailed assessment undertaken	interface among stakeholders.	
in stage 4 and stage 5 the detail of the safety		
argument is updated to correspond to the		
safety requirements derived and the more		
detailed understanding of the system		
architecture which has been developed. [1]		
Stage 8 Transfer into operation assessment	ED-78A addresses as the" bullet a" of stage 8 D1.3 in	The Ed-78A does not clearly addresses the impact of the
	section 6 "entry into service". Section 6:	introduction of datalink applications

		A2COS safety certification
ASCOS_WP4_APSYS_D4.1	Page:	96
1.1	Classification:	Restricted

Issue:

Aspects covered in D1.3[1]	Link with covered in ED-78A[17]	Comparison D1.3 vs. ED-78A
This stage is focused on demonstrating []that		
the transition to introduce the change is	Accepts the development and qualification data	Rec_ED_78_A.3: The ED78A should address the
acceptably safe. This consists:	produced by the stakeholders	transition to introduce the change
	• Ensures that the elements of the CNS/ATM system	
a) the fully proven change is ready to be	have been implemented in accordance with approved	
brought into operational use	plans.	
b) that the introduction of the change can be		
achieved without affecting the overall safety of	ED-78A addresses bullet b as a part of Section 5.1.1.j:	
the system while the change is being	Transition criteria are defined, including	
introduced. [1]	procedures, airspace requirements, and NOTAM;	
Stage 9 Define arrangements for continuous	Stage 9 is addressed on section 7 "operations". Section 7	ED_78A addresses the continuous safety monitoring
safety monitoring	provides objectives and guidance on evidence required	similar to D1.3
	for operations. The operations process ensures that	
This stage is focused on demonstrating that 5	system operations continue to satisfy operational, safety,	
[] that arrangements are in place to ensure	performance, and interoperability requirements while in	
that the change is demonstrated to be	service. For each applicant, this process consists of	
acceptably safe in operational service [1]	continued operations, including system monitoring and	
	iterative operational safety, performance, and	
	interoperability assessments as internal or external	
	changes are made for adjustments and problem	
	resolution; and the development and qualification of	
	follow-on modifications.	
Stage 10: Obtain initial operational	Compliance with ED-78A can be shown by a compliance	Not relevant
certification	matrix	
At this stage, the evidence generated in earlier		

Issue:

Aspects covered in D1.3[1]	Link with covered in ED-78A[17]	Comparison D1.3 vs. ED-78A
stages is presented by the applicant to the		
relevant authorities in order to obtain		
permission to introduce the change into		
service.		
Stage 11: Ongoing monitoring and	ED-78A consider the update of regulation basis as part of	Rec_ED_78_A.4 ED_78A section 3 "approval planning"
maintenance of certification	section 3 "approval planning"	should clearly be addressed to all stakeholders.
Following introduction into service, the		
monitoring arrangements defined in stage 9	Schedule. The schedule for operational implementation is	
must be implemented. The certification	identified and indicates the interaction between the	
argument must be updated at regular intervals	applicant and the approval authority, including milestones	
to confirm that the changed system continues	for reviews, evaluations, and data submittals.	
to achieve the relevant requirements. The		
intervals for update and recertification should		
be specified by the certifying authority		

Table 22 High level comparison between ED-78A and D1.3

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	98
Issue:	1.1	Classification:	Restricted

As a conclusion ED-78A steps are totally covered in D1.3, the delta found between the ED_78A and D1.3 are mainly due to fact that ED_78A scope is restricted to datalink operations. It has been found four recommendations for ED_78A.

Ident	recommendation
Rec_ED_78_A.1	ED_78A should clearly expose the interfaces among stakeholders and the allocation of safety
	requirements
Rec_ED_78_A.2	ED_78A should define an activity to stakeholders to develop new standards where functions
	and / or interfaces are not covered in existing standards. This new standards will be
	proposed to the Authorities for agreement.
Rec_ED_78_A.3	ED_78A should address the transition to introduce the change
Rec_ED_78_A.4	ED_78A section 3 "approval planning" should clearly be addressed to all stakeholders.

Table 23 Recommendation ED_78A

7.2.2 Comparison between recommendation of WP 4.1 to D1.3 and ED-78A guidelines

The D1.3 is a high-level methodology that needs being refined; the process of applying the D1.3 to the introduction of an RPAS in a non-segregated airspace has generated number of recommendation. In this subchapter we analyze if that recommendation are as well applicable to the ED_78A.

Rec_01 Context CO-2 can be expressed by a severity matrix at the level of the Total Aviation System level

The level of safety need to be agreed among stakeholder, the ED_78A has proposed a severity matrix/

Hazard Class	1 (most severe)	2	3	4	5 (least severe)
Effect on Operations	Normally with hull loss. Total loss of flight control, mid-air collision, flight into terrain or high speed surface movement collision.	Large reduction in safety margins or aircraft functional capabilities.	Significant reduction in safety margins or aircraft functional capabilities.	Slight reduction in safety margins or aircraft functional capabilities.	No effect on operational capabilities or safety
Effect on Occupants	Multiple fatalities.	Serious or fatal injury to a small number of passengers or cabin crew.	Physical distress, possibly including injuries.	Physical discomfort.	Inconvenience.
Effect on Air crew	Fatalities or incapacitation.	Physical distress or excessive workload impairs ability to perform tasks.	Physical discomfort, possibly including injuries or significant increase in workload.	Slight increase in workload.	No effect on flight crew.
Effect on Air Traffic Service	Total loss of separation.	Large reduction in separation or a total loss of air traffic control for a significant period of time.	Significant reduction in separation or significant reduction in air traffic control capability.	Slight reduction in separation or slight reduction in air traffic control capability. Significant increase in air traffic controller workload.	Slight increase in air traffic controller workload.

Table 24 Qualitative Safety impacts Eurocae ED78A

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	99
Issue:	1.1	Classification:	Restricted

<u>Rec_02 D1.3 should set a task for TAS stakeholders agree on the safety objectives imposed for each severity</u> <u>at TAS level</u>

The ED_78A has addressed this issue by proposing the following table. This table should be reviewed to assure coherency with a similar table used for aircraft stakeholder:

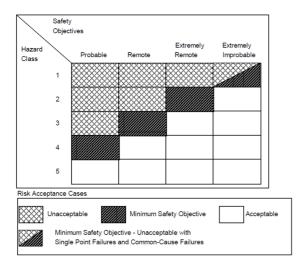


Table 25 Hazard classification and safety objectives relationship

<u>Rec_03</u>: D1.3 should set a task for Context C0-2 to be completed by a guideline to cascade Safety Objective from TAS to stakeholder level

In the Use Case WP 4.1, the safety objectives have allocated to the aircraft (as ATM is seen as a safety net) however, in the case that the safety objective was shared by different stakeholder, it would be necessary to decide how the safety objectives are supported by the stakeholder acting as a whole. The Use Case WP 4.1 proposed that to cascade safety objective it is necessary first to ensure the independency of the systems among stakeholders, and that the quality level need to be coherent among stakeholder. See discussion in 5.2.2

ED_78A establishes a process ASOR that allocates safety objectives among stakeholders. This process consider the common failures and review the implementation of system. The safety qualitative objective are covered.

The ED_78A, does not consider the qualitative safety objective and it does not address the concept of quality (e.g. DAL).

Rec_03 is partially applicable to ED_78A

<u>Rec_04 D1.3 should complete stage 1 by a guideline on production operational, and functional description of the change.</u>

The ED_78A presents an OSED and a guideline OSEIC. A close reading of the ED_78A OSEIC process makes it clear that the OSEIC is focused on datalink application, it would be necessary to update this process to cover all type of operations and services.

Rec_04 is applicable to ED_78A

<u>Rec_05 D1.3 should set up a clear activity for the stakeholder to agree on the safety terminology (hazards, safety objective, safety requirements, etc)</u>

The Use Case WP 4.1 that there is a difference between the meaning of certain safety terms (refer to 3.4.1) The ED_78A propose definition but it does not explain how to manage the potential divergences among stakeholders.

Rec_05 is applicable to ED_78A

Rec_06 D1.3 should set a task for the TAS stakeholders to agree on a guideline to identify hazards

The hazard identification in ED_78A is briefly described "*The operational hazards are identified as the loss or malfunction of the service, including misleading or delayed information [17]*". This description is not detailed enough. ED878A should describe a clear methodology to identify hazards from the OSED.

Rec 06 is applicable to ED_78A

<u>Rec_07 D1.3 should set an activity for TAS to agree on the proper level of scenarios at TAS level, these</u> <u>scenarios need being updated as long as the design in being detailed</u>

The Use Case WP 4.1 has found out that the proper level of the scenario highly depends on the safety methodology that the stakeholder uses. Given the fact that the D1.3 is expected to be supported by current standards when possible, the definition of the proposer level of scenarios requires stakeholder agreement.

The ED_78A does not address this issue. Note that ED_78A is only focused on the datalink applications.

Rec_07 is applicable to ED_78A

<u>Rec_08 D1.3 should set a task for the TAS stakeholder to agree on guideline to identify requirements from</u> <u>scenarios</u>

The identification of safety requirements are performed in ED_78A in terms of safety and in terms of performance. ED_78A addresses as well the requirement of interoperatibility. However there is not nay guideline that explains how to define these requirements. Rec_08 is applicable to ED_78A

<u>Rec_09 D1.3 should set a task for the TAS stakeholder to agree on guideline to share requirements from</u> <u>scenarios</u>

ED_78A establish a process to define requirements in interface. ED_78A presents a guideline INTEROPS applicable to datalink. This guideline need to be enlarged to cover all type of the operation, processes and services and to consider. Rec_09 is applicable to ED_78A

<u>Rec_10 D1.3 should set a task for the stakeholder to agree on a guideline to allocate requirements to humans</u>

ED_78A does not establish clear principles on humans. Rec_10 is applicable to ED_78A

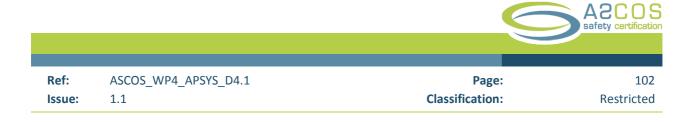
Rec_11 D1.3 should define a process to produce lessons learned for future developments

ED_78A established does not include process to clearly modify the standards. A process o fstandards improvement s(lesson learned)should be developed. Rec_11 is applicable to ED_78A

<u>Rec_12: D1.3 should improve the description of the certification argument to address changes in one single</u> <u>stakeholder.</u>

ED_78A established a clear traceability between changes to a low level (e.g equipment) and high level safety objectives. Rec_12 is not applicable to ED_78A

7.3 Final conclusion


This Use Case presented two approaches., for each one of them the main conclusion are:

• First approach: the approach proposed in ASCOS by D1.3 is applied by applicants to demonstrate that all the requirements are met.

In general terms, it has been found out that the claim structure proposed originally does not necessarily match the standards. However it is possible to tailor D1.3 in order to adapt it. This process of tailoring and refinement is described in 7.1

• Second approach the approach is applied by a stakeholder group to gather specifications and develop standards which define the requirements for the change

The methodology D1.3 can also being used to develop current standards. It has been found out that the ARP4754A/ED79A could be improved by the introduction of the ATM interface and that the human quality (Human DAL) need to be developed. This methodology D1.3 has also been used to perform a high level revision of a potential adaptation of ED_78A to general operations. It has been found out that the D1.3 methodology could suggests improvements to the ED_78A. Refer to 7.2

References

#	Authors(s), Title, Year
[1]	ASCOS D1.3:Outline proposed certification approach, A. Simpson, S. Bull, T. Longhurst, v1.2, 18 12-2013.
[2]	List of Areas of Change, In: Ongoing and Future Phenomena and Hazards Affecting Aviation compiled by Brian Smith, NASA Ames Research Center November 15, 2013,http://www.nlr-atsi.nl/fast/FAST_AoCs_20131115.pdf
[3]	EU 1178/2011
[4]	EC 2096/2005
[5]	Annex to ED Decision 2011/016/R
[6]	EASA CS-25 Amendment 14 (19 December 2013)
[7]	EASA Unmanned Aircraft Systems (UAS) E.Y013-01 25/08/2009
[8]	JARUS: Guidance on RPAS C2 link Required Communication Performance (C2 link RCP) (Issue 21 Nov 2013)
[9]	JARUS: SCOPING PAPER to AMC RPAS.1309, Remotely Piloted Aircraft Systems Systems Safety Assessment Issue 1 – January 2014
[10]	ICAO Unmanned Aircraft Systems (UAS) Cir 328 AN/190
[11]	CAP 393 (12th May 2014)
[12]	CANSO publication "ANSP Considerations for RPAS Operations", 2014
[13]	ED-79A / SAE ARP 4754A GUIDELINES FOR DEVELOPMENT OF CIVIL AIRCRAFT AND SYSTEMS, December 2010
[16]	EUROCAE UAS/RPAS AIRWORTHINESS CERTIFICATION "1309" System Safety Objectives and
	Assessment Criteria, ER-010, July 2013.
[17]	ED-78A: GUIDELINES FOR APPROVAL OF THE PROVISION AND USE OF AIR TRAFFIC SERVICES SUPPORTED BY DATA COMMUNICATIONS, December 2000
[18]	ASCOS. WP 3.2 Risk models and accident scenarios
[19]	ASCOS WP 3.5 Total Aviation System Safety Standards

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	103
Issue:	1.1	Classification:	Restricted

Appendix A Modified functions. RPAS vs. manned aircraft

The following table details additions and/or modifications of the RPAS in comparison to the manned aircraft systems


RPA	S high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems
fund	ction		
1.	Accommoda	It includes the proper	A priori no modification is expected.
	te payload	accommodation of cargo in terms	In case of failure the current detection and actuation means (sensors, valves) are installed.
		of ventilation, temperature,	
		pressure, humidity	
2.	Fly		
2.1	Aircraft	It considers aircraft configuration	Aircraft configuration needs to be automated.
confi	iguration	controls (control drag, control	Some sub-functions require design modifications.
		lift, LGERS extension) required	Gear Extension / Retraction
		to adapt aircraft	In case of failed gear extension, the pilot can recycle the maneuver, extend in emergency mode (gravity extension) and
		shape/performance to the	confirm actual position of the gears with help of TWR ATCo. For these reasons specific sensors and procedures have to
		required flight phase.	be considered for RPAS.
			Slats /flaps configuration
			In case of dissymmetric slat or flap configuration the detection by the pilot of aircraft abnormal behavior and his
			recovery action are immediate. For these reasons a specific multi-sensors detection function has to be considered for
			RPAS.

Ref: ASCOS_WP4_APSYS_D4.1 Issue: 1.1

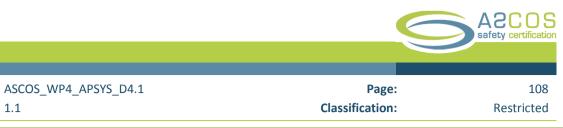
Classification:

RPAS high level function	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems
2.2 Speed	On ground. It includes	Deceleration on landing
control	retardation means on ground	Auto brake function remains the only means to control speed on ground with the brakes during rollout. Spoilers
control	C C	
	(spoilers, reverses) and parking	and/or reverses extension need to be automated. Acceleration/deceleration sensed by the pilot is considered as
	brakes	detection means. Specific sensors need to be implemented on RPAS.
		Wheel rotation
		During taxi phase on ground the pilot detects abnormal rolling behavior due to erroneous wheel rotation (i.e.: wheel
		blocked). Automatic monitoring of speed and steering on ground needs to be implemented.
	At take-off	Decision speed.
		Aircraft behavior -acceleration rate, aircraft performance, and noises- are directly sensed by the pilot and contribute
		to his decision at V1. As the remote pilot will not be in position to monitor and react effectively, some alternative to
		the decision speed needs to be implemented for automatic take-off.
		The physical sensation associated to the loss of acceleration/deceleration is considered as detection means. Specific
		sensors need to be implemented on RPAS.
	In flight	RPAS adapts speed in flight to trajectory and aircraft characteristics. Trajectory is owned by the remote pilot who
		knows which are the limits of the aircraft for the current weight and balance conditions. The remote pilot needs to
		agree on trajectory or speed modifications requested by the ATCo.
		The physical sensation by the pilot of the aircraft behavior in reaction to controls on attitude or
		acceleration/deceleration is considered as detection means. Specific sensors need to be implemented on the RPAS
		(e.g.: flutter, buffeting).
2.3 Attitude	On ground (lateral control)	Lateral control on ground by means of surfaces control (in high speed) and steering (in low speed) needs to be
Control		automated.

Issue:

RPAS high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems
function		
	In flight (lateral and vertical	Lateral and vertical control in flight is achieved by surfaces control. Depending of the number and role of failed control
	control)	surfaces (e.g.: jamming) different control laws are implemented in the flight control system, some of them requiring
		pilot in the loop. Alternative automated control laws would have to be implemented on RPAS in order to maintain
		minimum flight control for landing on a diversion airfield or for crash landing.
		In addition, the RPAS flight control laws would implement an automatic de-crabbing function for flare phase.
3. Guidance and	navigation	
3.1 Provide	This function implies the	No modification in the function. Loss or erroneous behavior of main navigation functions will have the same
navigation and	collecting and treatment of the	consequences as for a manned aircraft. If the navigation of RPAS has to be reverted in dead reckoning, guidance of the
control data.	data required for navigation	RPAS towards a diversion airfield or a crash landing site might request the help of the ATC resources, as for manned
	purposes (position data, heading	traffic.
	data, time references data)	
3.2 Managemen	On ground (pre departure)	No modification. Remote pilot performs the same functions as with a manned aircraft.
t of flight plan		
	In flight	The flight plan is managed by the remote pilot In the same way as today. The instructions or clearances are received
		from the controller by datalink or voice (RT). Trajectory is owned by the remote pilot who knows which are the limits
		of the aircraft for the current fuel, weight and balance conditions. The remote pilot needs to agree on trajectory or
		speed modifications requested by the ATC. Then the aircraft updates the trajectory and the remote pilot informs the
		ATC. Handling of ATCo instructions of immediate execution (e.g.: Go Around) may require specific arrangement
		between ATC and RPAS operational organizations.
3.3 Support		No modification, aircraft made prediction about fuel computation, arrival time as per today.
flight		
optimization		

RPAS high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems
function		
3.4 Guidance	on ground	The primary means to control aircraft on ground is the pilot view. Pilot guides the aircraft following the instructions of
		the ATC. In order to deal with any unpredictable obstacle that may interfere with aircraft trajectory on ground, the
		RPAS pilot needs to have the same view (i.e.: video transmission)
	at T/O or Go-Around	Trajectory of RPAS during the take-off and in case of go-around needs to be automated. It encompasses situations of
		OEI, HERTO or balked landing.
	on cruise	Guidance in cruise will be fully autonomous. Back-up by the remote pilot may be limited, in particular over
		remote/oceanic areas where the C2 link capability could be reduced or delayed.
	for approach and landing	RPAS needs to be able to land automatically. The remote pilot will have direct control of the RPAS for the landing
		clearance or go-around instruction. This may require specific arrangement between ATC and RPAS operational
		organizations. Some ILS type guidance means at the destination airfield may be required to be permanently available
		with a zero-zero landing capability (i.e.: an ATOLS- level capability or equivalent system of CAT III performance)
4. Provision of	Provision of fuel and Power	No modification of systems envisaged for the RPAS in case of failure of propulsion, hydraulic or pneumatic systems.
resources	(electric, hydraulic, propulsive,	The electric system in manned aircraft has a panel of circuit-breakers accessible to pilots, which constitute a specific
	pneumatic, thermal)	"HMI" used by pilots in a variety of abnormal procedures and contingency situations (e.g.: fire, reset). An automatic
		management of the electrical distribution / protection function will have to be implemented for RPAS.
5. Human mach	ine interface	
5.1 Information	Information	The remote pilot will have all the information usually displayed in the manned cockpit. However, all abnormal
to remote pilot		procedures in case of failure an aircraft system shall be automated, as latency of communications could prevent the
(downlink)		remote pilot to react efficiently in most of the cases. Though, the information displayed "for information" on the
		remote pilot position is more comprehensive than in a piloted aircraft and allows a more efficient monitoring of
		aircraft system status, better prognosis in case of failure and improved decision making for recovery.



Issue:

1.1

ASCOS_WP4_APSYS_D4.1

RPAS high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems
function		
5.2 Downlink /	Warning/Cautions	The RPAS implements an automated decision making process in case of warnings or cautions, able to execute the
status.		related abnormal procedures.
Telemetry		In case of failure of the communication with the pilot station, the RPAS will initiate an alternative communication link
		with a backup pilot station through an available sub-network on reach. The other pilot will take over the aircraft
		control (backup remote station).
5.3 Uplink-		The remote pilot shall have capability to take full control of the RPAS. However, this capability may be limited to
command.		situations where the performance of the C2 link is sufficient for the continuity and integrity of the function. This could
Telecommand		be required for departure or arrival phases and overflying of crowded areas. In case of failure of the remote station or
		sub-network during these phases, a handover might be automatically initiated by the RPAS to connect to a backup
		remote station through an alternative sub-network.
5.4 Provide		When ATC communication (RT or datalink) is relayed through the C2 link, the latter shall have at minimum the same
communication		level of performance of continuity and integrity and shall maintain the overall latency of transactions within the
with ATC		prescribed limits. In situations when this might not be practically achievable (e.g.: remote / oceanic areas) some
		specific arrangement for direct communication could take place between ATC and RPAS operational organizations. The
		remote pilot is provided with a continuous indication of the link signal quality (strength, range limit, masking, etc.).
		Planning of the available network and links to be used during the different phases of is part of the flight preparation.
		RPAS shall be able to monitor autonomously that the communication between the remote pilot and the ATCo is active.
		In case of loss of communication with the ATC, the aircraft shall inform either the pilot or the ATCo of the situation
		(i.e.: squawk code 7600). When the remote pilot is informed that the uplink is lost, he may contact directly the ATC.
		This may require specific arrangement between ATC and RPAS operational organizations. In the meantime the aircraft
		follows the planned trajectory.

Ref:

Issue:

RPAS high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems	
function			
6. Support	This function includes the	The information transmitted the remote control position is more comprehensive than in a piloted aircraft and	
maintenance	recording of RPAS status / events	encompasses all aircraft systems. It allows a more efficient monitoring of aircraft systems status, better prognosis in	
	and failures.	case of failure and improved decision making for maintenance. In any case, a flight recorder function might be require	
		on board the aircraft in case of incident or accident in circumstances of loss of the C2 link.	
7. Ensure safety	/security of operations		
7.1 Protection	Protection against hail, ice	On manned aircraft a visual indication of icing condition is provided to the pilot. Specific sensors and procedures would	
against	accretion	be implemented in RPAS for situations of potential ice accretion in case of undetected failure of the anti-ice system.	
environment			
	Weather conditions, storms,	The remote pilot should be provided with accurate, real time map of significant thunderstorms along the planned	
	strong turbulences, wake vortices	trajectory, in order to avoid excessive turbulences to the RPAS. This information might be greatly improved by airborne	
		dedicated sensors of the weather conditions around and in front of the RPAS (e.g.: lidar)	
	wind shear	A predictive windshear protection system might be necessary in order to reproduce the reaction of a skilled pilot,	
		based on dedicated sensors (e.g.: lidar)	
	Electromagnetic protection, HIRF,	RPAS might need to be more robust against HIRF, due to potential negative impact on the continuity of the C2 link	
	lightning	communication	
	Bird strikes	Specific shielding of RPAS nose should be designed.	
7.2 Protection	anti-collision protection, in flight	EGPWS and TCAS coupled to autopilot shall be envisaged. The "see and avoid" duty performed by the pilot shall be	
against external		replaced on the RPAS by a "detect and avoid" function based on specific sensors having capability to detect small, non-	
event		cooperative traffic (e.g.: gliders, VLAs), in particular when flying in class B or C airspaces. This may be extended as well	
		to "see and recognize" capabilities if autonomous taxiing capacity is sought for. For example recognize and understand	
		aerodrome signs, markings and lighting (as per ICAO circular 328). However the remote pilot will still be involved in	
		complying with the ground controller instructions and execute the taxi clearance.	

RPAS high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems	
function			
	anti-collision protection, on	Due to the diversity of potential obstacles on ground, most of them unpredictable, the primary means for collision	
	ground	prevention on ground would be video and remote control, or direct visual control by the pilot	
	Corruption of data	The C2 link communication needs to be highly robust against data corruption. However, protective devices or features	
		shall not degrade significantly the expected performance of the C2 link for continuity. Scenarios of unlawful	
		interference should be considered too.	
7.3 Protection	Protection against fire/overheat	In case of smoke / overheat / fire early detection is essential. In manned aircraft, the crew is often the first step of	
against intrinsic	smoke	smoke / fire detection. Specific sensors need to be implemented in critical areas of the RPAS.	
events			
	Protection against detachment of	No modifications	
	the structure part		
	Induced vibration protection	As there is no pilot on board who would be prevented to perform his duties in case of excessive vibrations, the	
		protection is only required for the continued functioning of the sensors and equipment on board.	
7.4 Protection	Lateral control/vertical control/	Autonomous control. No modification, protection is autonomous	
flight envelope	flight envelope	The aircraft is no longer protected against over speed	
an s structure	Loads in flight/touch down	In case of too much load for landing/in flight, RPAS will inform to the remote pilot and it will automatically alleviate	
protection		load (fuel) if necessary	
8. Failure mana	gement system		

RPAS high level	Sub functions description	Additions and/or modifications of the RPAS in comparison to the manned aircraft systems	
function			
	FailMS Failure Management	The autonomous failure management considers the continuous monitoring and decision making process usually	
	System	performed by the pilot during the course of the flight: Go Around decision, monitoring of adherence to flight plan / t	
		trajectory constraints, decision to reject take-off, fire procedures, conduct of ditching / crash-landing, etc.	
		This entails that the system should handle autonomously all the actions that are normally performed by a pilot, as set	
		per the FCOM Normal and Abnormal procedures :	
		Decision to use the reverse thrust	
		Decision of diverting to an emergency site.	
		Fuel management.	
		Flight performance optimization (speed / altitude)	
		Prioritization in case of conflict of reconfiguration between different systems.	
		Automation level (pilot can chose the automation level delegated to the airborne systems)	
		Specifically this entails that the AFMS could handle abnormal procedures involving multiple aircraft systems as well as	
		the monitoring of the FailRMS functionality (see below).	
	FailRMS	The management of failures has to be distributed primarily between the different aircraft systems. Each aircraft	
		system shall be capable to handle as planned its own reconfiguration in case of failure. This capacity shall be	
		implemented consistently on each of the aircraft systems under the overall supervision of the AFMS (function A above)	
		in order to prevent that incompatible or conflicting reconfigurations are applied simultaneously on different systems	
		and to set priorities in case of conflicting reconfigurations. FailRMS will handle:	
		• Reconfiguration on failure in case failure reconfiguration does not require a prioritization of the recovery	
		actions amongst the different systems.	
		Abnormal procedures applying on one system.	

Table 27Addition and/or modifications of the RPAS in comparison to the manned aircraft systems

Appendix B RPAS assumptions

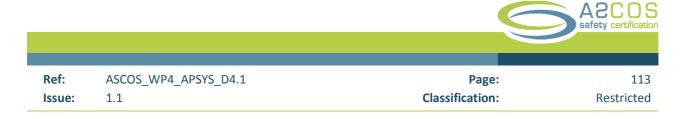
	Operational environment			
OP_1	Scope of the argument limited to consider only class B and C airspace. However, it is noted that the inclusion of class C airspace introduces VFR traffic and therefore depends on the RPAS including a Sense and Avoid function			
OP_2	No require visual contact between pilot and aircraft.			
OP_3	The scope of the RPAS will include the aircraft, the ground station used to pilot the aircraft and the communications link between aircraft and ground station.			
OP_4	RPAS operates both within and beyond RLOS. The latency introduced by the C2 datalink may contribute to potential hazards.			
OP_5	RPAS performs cargo flight from A to B, similar to current cargo planes.			

Table 28 Assumption Operational Environment

	Communication
COM_1	Similarly as with manned traffic Air Traffic Controllers have contact with the RPAS by means of
	radio communication or by digital data link (VHF terrestrial or via satellite communication).
COM_2	The RPA serves as a relay for the voice and data communication between the Air Traffic Controller
	and the remote pilot.
COM_3	In case of loss of communication between RPA and ATC, the ATC could communicate directly with
	the remote pilot via the backup line.
COM_4	As in normal conditions the RPA performs the flight automatically, it is assumed that the RPA is
	able to perform standard communication with ATC (follow up clearances, respond to requests,
	etc.). The remote pilot is responsible for the proper execution of the filed flight plan and is
	monitoring.
COM_5	In non-normal conditions the pilot takes over the control of the RPA and communicates with ATC.
COM_6	Similarly as with manned traffic Air Traffic Controllers have contact with the RPAS by means of
	radio communication or by digital data link (VHF terrestrial or via satellite communication).

Table 29 Assumption Communication

	ATC
ATC_1	ATC phraseology has been established, including those for abnormal and emergency situations.
ATC_2	Necessary FDP system modifications have been implemented to allow for RPAS specific flight
	plans.
ATC_3	Necessary alerting services are in place to allow for RPAs that are under air traffic control services.


Ref:ASCOS_WP4_APSYS_D4.1Issue:1.1

	ATC	
ATC_4	Specific Contingency and Emergency Operation Procedures have been established for the RPAS	
	(as part of the operational certification). Basically the RPA behaves in a predictable manner. ATC is	
	fully informed and trained to apply these procedures. E.g. in case of loss of C2, the procedure	
	could involve alerting the ATC and airspace users of the situation (squawk code), the use of a	
	backup line for RPS to ATC communications, predetermined flight or holding patterns and	
	predefined flight completion options (alternate landing sites or in rare cases, terminate the flight	
	by controlled flight into terrain (CFIT) at a pre-determined point that is known to be unpopulated).	

Table 30 Assumption ATC

	RPAS and aircraft itself
RPAS_1	RPAS is conceived as an adaptation of an existing civil piloted fixed wing cargo aircraft:
RPAS_2	The adaptations will include provision of a Detect and Avoid function.
RPAS_3	The scope of the RPAS will include the aircraft, the ground station used to pilot the aircraft and the communications link between aircraft and ground station.
RPAS_4	It is assumed that the RPA is fitted with certificated CNS/ATM equipment that allows for the civil published IFR approach procedures.
RPAS_5	It is assumed that the RPAS includes a certificated Detect and Avoid system that allows for flight within non-segregated airspace. As in manned aviation ATC is responsible for separation assurance, while the RPAS remote pilot is responsible to avoid collisions.
RPAS_6	The RPAS is transparent for the ATC

Table 31 Assumption RPAS

Appendix C Areas of Change

The impact that the RPAS might cause in the AoC are classified in four groups

- N/A: not applicable
- No: No impact identified
- I: Indirect: There is an impact that the Aoc might cause to the RPAS, but this impact is common to other aircraft and it is not related to the fact that the aircraft is piloted from ground.
- Yes; there is a clear impact on the RPAS operations.

#	Area of Change		Relevance for RPAS.
1.	Introduction of new aircraft	T	Indirect. Unless RPAS counts itself with new aerodynamic
	aerodynamic and propulsion		and propulsion configurations, but even in this case, the
	configurations		fact that the pilot was on ground is independent from
			the aerodynamic and propulsion system.
3.	Changes in design roles and	Т	Indirect, the RPAS can be impacted by a new definition in
	responsibilities among manufacturing		roles in the aircraft manufactures, in case the RPAS is
	organizations		manufactured by traditional large aircraft companies
			(e.g. Boeing).
5.	Introduction of new runway-	N	RPAS is based on a traditional manned cargo aircraft,
	independent aircraft concepts		which requires certain types of runways
6.	New supersonic and hypersonic	T	Indirect, The interaction between RPAS and other
	transport aircraft		aircraft is transparent and does not rely on pilot on
			board. In case of loss of separation RPAS reacts faster
			than piloted aircraft (do not wait for pilot decision.
9.	Accelerating scientific and	Т	Indirect, RPAS might benefit from this advance like other
	technological advances enabling		non-RPAS aircraft.
	improved performance, decreased fuel		
	burn, and reduced noise		
11.	Air traffic composed of a mix of	Y	RPAS integration is more difficult in mixed zones, as
	aircraft and capabilities		additional safety measures may need to be taken.
13.	Reliance on automation supporting a	Т	Indirect The automation of the RPAS might not impact
	complex air transportation system		specifically to the RPAS, RAPS is transparent form an ATC
			point of view.
14.	Advanced vehicle health management	Y	RPAS may benefit from this change
	systems		
18.	New cockpit and cabin surveillance	N	No, RPAS has its proper cockpit (on ground) and
	and recording systems		surveillance system.
19.	Emergence of high-energy propulsion,	T	Indirect, RPAS might benefit from this advance like other
	power, and control systems		non-RPAS aircraft.

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

A2COS safety certification

21.	Advanced supplementary weather	I	Indirect, our cargo RPAS might benefit from this advance
	information systems		like other non-RPAS aircraft
	New cockpit warning and alert systems	I	Indirect, our cargo RPAS failure management might benefit from this advance,
27	Next-generation in-flight entertainment and business systems	N	No passengers
31	New glass-cockpit designs in general aviation aircraft	N	No, RPAS cargo does not include glass-cockpit.
33	Entry into service of Very Light Jets	N	No, this Use Case proposed an RPAS supported by detect and avoid system that is expected to detect Very Light Jets.
36	Increasing implementation of Electronic Flight Bag (EFB) for efficient and safe operations	N	No, no people on board.
39	Increasing use of composite structural materials	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft.
41	Ongoing electronic component miniaturization	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft.
43	Highly-integrated, interdependent aircraft systems	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft.
47	Changing human factors assumptions for implementing technology	Y	RPAS ground station might benefit from better HMI
51	Delegation of responsibility from the regulating authority to the manufacturing, operating or maintaining organization	Y	Y, the RPAS operation and the behavior of RPAS after a failure require a close collaboration of stakeholder's ant the involvement of authorities.
53	Trend toward privatization of government ATC systems and airports	I	I, RPAS trusts on ground services
58	Shift toward performance-based solutions and regulations	Y	Yes, this may help the acceptance of RPAS
64	Remote Virtual Tower (RVT) operational concepts	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft.
66	Societal pressure to find individuals and organizations criminally liable for errors in design and operations	I	Indirect. The design and the definition of requirements are expected to trace the liability of stakeholders.
67	Economic incentives to form partnerships and outsource organizational activities	I	Indirect, our cargo RPAS might benefit from this advance like other non-RPAS aircraft.
68	Global organizational models	I	Indirect. In the same way that for manned aircraft.

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

69	Evolution in lines of authority, command and responsibilities within	Y	This may accelerate or delay the acceptance of RPAS
	the air transport system		
73	Increasing complexities within future	T	Indirect, our cargo RPAS might benefit from this advance
	air transportation systems		like other non-RPAS aircraft.
78	Increasing size of maintenance, ATM,	Т	Indirect, our cargo RPAS might benefit from this advance
	and operations databases		like other non-RPAS aircraft.
80	Reduction in numbers of aviation	Ν	No, RPAS are a new technology.
	personnel familiar with previous		
	generation technology and practices		
82	Technologies and procedures enabling	Т	Indirect, RPAS might benefit from this advance like other
	reduced separation		non-RPAS aircraft.
86	Evolution in the type and quantity of	T	Indirect, our cargo RPAS might benefit from this advance
	information used by ATM personnel		like other non-RPAS aircraft.
87	Changing design, operational, and	Т	Indirect, our cargo RPAS might benefit from this advance
	maintenance expertise involving air		like other non-RPAS aircraft.
	navigation system (ANS)		
	equipment		
89	Increasing heterogeneity of hardware	Y	Y, RPAS requires compatibility in performance and
	and software within the ANS system		quality with ANS systems.
93	Increasing reliance on satellite-based	Т	Indirect, RPAS might benefit from this advance like other
	systems for Communications,		non-RPAS aircraft.
	Navigations, and Surveillance (CNS)		
	Air Traffic Management functions		
95	Changing approaches to ATM warning	Т	Indirect, our cargo RPAS might benefit from this advance
	and alert systems		like other non-RPAS aircraft.
96	Increasing interactions between	Y	RPAS is very reliant on A-G interactions and may benefit
	highly-automated ground-based and		
07	aircraft-based systems		
97	Introduction of artificial intelligence in	1	Indirect, our cargo RPAS might benefit from this advance
00	ATM systems	v	like other non-RPAS aircraft.
99.	Increasing dependence on in-flight electronic databases	Y	RPAS is very reliant on onboard databases.
100	Increasing operations of military and	Т	Indirect, our cargo RPAS might benefit from this advance
	civilian unmanned aerial systems in		like other non-RPAS aircraft.
	shared military, civilian, and special		
	use airspace		
101	Redesigned or dynamically	Y	Airspace redesign may consider RPAS operational
•	reconfigured airspace		aspects.

A2COS safety certification

109	Increasing utilization of RNAV/RNP departures and approaches by smaller	I	Indirect, our cargo RPAS might benefit from this advance like other non-RPAS aircraft.
	aircraft		
114	Increasing operations of cargo aircraft	Y	Y, RPAS is a cargo aircraft.
117	Very long-range operations, polar operations, and ETOPS flights.	I	Indirect, cargo RPAS might benefit from this advance like other non-RPAS aircraft.
118	. Emerging alternate operational models in addition to hub-and-spoke concepts	I	Indirect, cargo RPAS might benefit from this advance like other non-RPAS aircraft.
119	Increasing numbers of Light Sport Aircraft	I	Indirect, our cargo RPAS may have to deal with more Light Sport Aircraft just like other non-RPAS aircraft.
122	Accelerated transition of pilots from simple to complex aircraft	I	RPAS pilot training could benefit from new training developments.
125	Operation of low-cost airlines	N	No, in the same way that for manned aircraft
129	Growth in aviation system throughput	N	No, in the same way that for manned aircraft
133	Assessment of user fees within the aviation system to recover costs of operation	N	No, in the same way that for manned aircraft
136	Increasing use of Commercial Off The Shelf (COTS) products in aviation	N	no , in the same way that for manned aircraft
138	Increased need to monitor incident and accident precursor trends	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft. RAPS records not only on the aircraft but as well on the cabin on ground.
139	Increasingly stringent noise and emissions constraints on aviation operations	N	No, in the same way that for manned aircraft
141	Changes in aviation fuel composition	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft
142	Language barriers in aviation	N/	N/A the RPAS uses voice communication only in
•		A	emergence procedures. This is common with non-RPAS aircraft.
144	Changing management and labor relationships in aviation	N	No, in the same way that for manned aircraft
148	Increasing frequency of hostile acts against the aviation system	I	I, this RPAS is a cargo aircraft with no passengers on board.
161	. Increasing numbers of (migratory) birds near airports	I	Indirect. RPAS does not include glass on the cockpit; it is more robust against bird collision.

			safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	117
Issue:	1.1	Classification:	Restricted

ASCO2

170	. Increasing manufacturer sales price incentives due to expanding competitive environment	I	I, This cargo RPAS might benefit from this advance like other non-RPAS aircraft.
174	New surface traffic flow management technologies	1	I, RPAS might adapt to the new surface traffic flow management
184	Increasing amount of information available to flight crew	1	I, Flight crew, located on ground.
185	Introduction of Non-Deterministic Approaches (NDA) and artificial intelligence (self learning) in aviation systems	Y	Y, the RPAS might improve the AFMS system.
187	Shift in responsibility for separation assurance from ATC to flight crew	I	I, This cargo RPAS might benefit from this advance like other non-RPAS aircraft.
188	. Introduction of new training methodologies for operation of advanced aircraft	I	Indirect, RPAS might benefit from this advance like other non-RPAS aircraft
189	Shifting demographics from military to	N	No, in the same way that for manned aircraft. Remote
200	civilian trained pilots Increased dependence on synthetic training in lieu of full-realism simulators	N	pilot is expected to be a manned trained pilot. no , in the same way that for manned aircraft
202	Shortened and compressed type rating training for self-sponsored pilot candidates	N	no , in the same way that for manned aircraft
205	Operational tempo and economic considerations affecting flight crew alertness	N/ A	Remote pilot is not under the same consideration that an on board pilot
218	. Supplementary passenger protection and restraint systems	N	N/A no passenger on board
220	Increasing functionality and use of personal electronic devices by passengers and flight crew	N	N/A no passenger on board. Remote pilot
221	Introduction of sub-orbital commercial vehicles	N	no , in the same way that for manned aircraft
222	Standards and certification requirements for sub-orbital vehicles	N	No, in the same way that for manned aircraft. Remote pilot is expected to be a manned trained pilot.
223	Increasing frequency of commercial and government space vehicle traffic	N	No, in the same way that for manned aircraft. Remote pilot is expected to be a manned trained pilot.

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

Ref:	ASCOS_WP4_APSYS_D4.1	Page:	118
Issue:	1.1	Classification:	Restricted

A2COS safety certification

225	Entry into service of commercial,	T	Indirect, RPAS might be impacted by this change like
	space-tourism passenger vehicles		other non-RPAS aircraft
226	. Changes in the qualifications of	I	Indirect, RPAS might be impacted by this change like
	maintenance personnel		other non-RPAS aircraft
230	Paradigm shift from paper based to	N/	Indirect, RPAS might be impacted by this change like
	electronic based maintenance records	А	other non-RPAS aircraft
	and databases		
236	Increasing use of virtual mock-ups for	I.	Indirect, RPAS might be impacted by this change like
	maintenance training and for		other non-RPAS aircraft
	evaluation of requirements		
241	Operational tempo and economic considerations affecting fatigue among maintenance personnel	I	The RPAS might require higher maintenance tasks.
242	Increasing single-engine taxi	1	Indirect, RPAS might benefit from this advance like other
	operations or taxi on only inboard		non-RPAS aircraft
	engines of 4-engine aircraft		
243	Novel technologies to move aircraft	I	Indirect, RPAS might be impacted by this change like
	from gate-to-runway and runway-to-		other non-RPAS aircraft
	gate		
244	High-density passenger cabin	N/	N/A no passenger on board
	configurations	А	
245	Worldwide implementation of SMS	I	Indirect, RPAS might be impacted by this change like
			other non-RPAS aircraft
246	World wide climate change trending	T	Indirect, RPAS might be impacted by this change like
	towards warmer temperatures		other non-RPAS aircraft. Increase of warmer
			temperatures implies fastest formation of winds.
247	New aircraft recovery systems in	N/	Indirect, RPAS might benefit from this advance like other
	general aviation and commercial	А	non-RPAS aircraft
	aircraft		
249	Increasing demands for limited radio	T	Indirect, RPAS might be impacted by this change like
	frequency bandwidth		other non-RPAS aircraft
250	Shortage of rare-earth elements	Ν	No, in the same way that for manned aircraft. Remote
			pilot is expected to be a manned trained pilot.
251	Introduction of new training	T	Indirect, RPAS might be impacted by this change like
	methodologies for maintenance staff		other non-RPAS aircraft
252	Smaller organizations and owners	I	Indirect, a priori the RPAS will not be an again aircraft
	operating aging aircraft		(for certain time). The interaction on flight or on ground
			of RPAS and old aircraft should not be different from the
			interaction with a current aircraft and aging aircraft.

ASCOS—Aviation Safety and Certification of new Operations and Systems Grant Agreement No. 314299 This report is not to be reproduced, modified, adapted, published, nor disclosed to any third party, without permission of the ASCOS Consortium

254	Aging maintenance workforce	I	Indirect, RPAS might be impacted by this change like
•			other non-RPAS aircraft
255	New pilot licensing standards	Y	Yes, remote pilot licensing might be impacted
256	Decreasing availability of qualified	T	Indirect, RPAS might be impacted by this change like
	maintenance staff at stations other		other non-RPAS aircraft
	than home base of operation		
257	Reluctance among operators to	Т	Indirect, RPAS might be impacted by this change like
•	implement voluntary proactive safety		other non-RPAS aircraft
	mitigations		
259	Shift in the demographics of newly-	Т	Indirect, RPAS might be impacted by this change like
	hired air traffic controllers compared		other non-RPAS aircraft
	with retiree skills and interests		
260	. Increasing use of Controller Pilot Data	T	Indirect, communication with ATC is not considered,
	Link Communication (CPDLC) for		datalink do not change
	weather information and		
	advisories/clearances		
261	Operational tempo and economic	I.	Indirect, RPAS might be impacted by this change like
	considerations affecting air traffic		other non-RPAS aircraft
	controller alertness		
262	Potential pilot shortages	Y	RPAS is piloted remotely, pilot shortage impacts as well
•			in RPAS
263	Shift from clearance-based to	Т	Indirect, RPAS might be impacted by this change like
•	trajectory-based air traffic control		other non-RPAS aircraft
265	Socio-economic and political crises	Ν	No
	affecting aviation		
266	Single-pilot cockpits for large	Ν	N/A
•	commercial transports		
267	Increasing adoption of software	N	Indirect, adoption of radio system might be used for
	defined radio systems in commercial		remote pilot and ATC communication.
	aviation		
268	Decrease in turboprop fleets and	T	Indirect, RPAS might be impacted by this change like
	operations		other non-RPAS aircraft
269	Proliferation of voluntarily-submitted	N	No, the voluntary safety information , provided by ATC,
	safety information		pilot or maintenance
270	Initiation of collaborative air traffic	N	No, the RPAS is transparent in from the point of view of
	management		the ATC.
271	Improved surface operations	N	No, in the same way that for manned aircraft. Remote
	technologies and procedures		pilot is expected to be a manned trained pilot.

			Safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	120
Issue:	1.1	Classification:	Restricted

272	Increased traffic flows involving closely-spaced parallel, converging, and intersecting runway operations	N	No, the RPAS is transparent in from the point of view of the ATC. In the case of loss of separation, potential collision, the RPAS does not wait for pilot instruction, the reaction time of an RPAS are shorter.
273	Increased throughput utilizing improved vertical flight profiles and aids to low-visibility operations	N	No, in the same way that for manned aircraft. Remote pilot is expected to be a manned trained pilot.
274	Widespread deployment of System Wide Information Management (SWIM) on-demand NAS information services	N	No, the RPAS is transparent in from the point of view of the ATC.

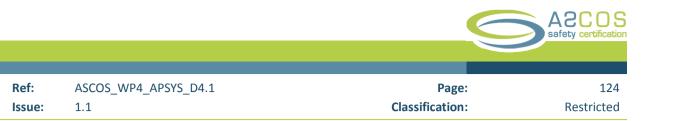
Table 32 Areas of Changes impacted by the RPAS operations

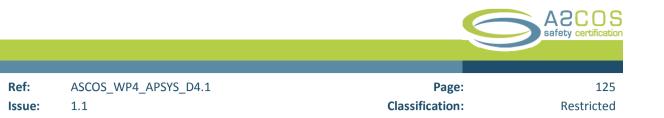
			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page	
Issue:	1.1	Classification	

Appendix D Scenarios

D.1 Normal Scenarios

This list of scenario presents the operational scenarios for an AutoFailMS working normally.


	Presentation of the		Safety impact in Aircraft	Safety impact in ATC	HaZ
Ident	Scenario	Description of scenarios	and pilot	and controller	
NS-1	Normal failure-free	AutoFailMS works normally.	NSE	None	NSE
	operation, no	AutoFailMS provides system status information to remote pilot			
	intervention required	to allow remote pilot to monitor AutoFailMS function.			
	from AutoFailMS				
	(intervention from the				
	AutoFailMS would				
	constitute a failure of the				
	AutoFailMS) although it				
	will provide information				
	to the remote pilot.				
NS-2	successful reconfiguration	Failure occurs to aircraft system before final approach	The AutoFailMS informs to	None	GEN_HAZ_1
	of the aircraft systems (by	AutoFailMS detects failure.	the remote pilot who)	GEN_HAZ_4
	the AutoFailMS) following	Depending on the type of failure and (emergency, caution with	validates (if required) the		
	a failure, such that the	action pilot, caution without action, normal procedure) the	action.		
	mission continues	AutoFailMS informs to the remote pilot and waits for validation,	The severity of the scenario		
	according to the flight	informs to the remote and applies the action, or applies the	depends on the failure.		
	plan, with no deviation	action automatically.	From MIN (slight increase		
	from intended flight path;	In case actions required a validation by remote pilot, remote	in pilot workload such a		
		pilot validates.	routine flight changes)		
		AutoFailMS instructs RPAS.			
		Note: there is no need to provide any information to ATM or			
		other aircraft because the aircraft is able to continue the flight			
		without deviation.			


	Presentation of the		Safety impact in Aircraft	Safety impact in ATC	HaZ
Ident	Scenario	Description of scenarios	and pilot	and controller	
NS-3	successful	Failure occurs to aircraft system before final approach	The AutoFailMS informs to	For the Air controller	GEN_HAZ_1
	reconfiguration of the	AutoFailMS detects failure.	the remote pilot who	slight increase on	GEN_HAZ_2
	aircraft systems (by the	Depending on the type of failure (emergency, caution with	validates (if required) the	workload. The	GEN_HAZ_4
	AutoFailMS) following a	action pilot, caution without action, normal procedure) the	action.	potential deviation of	GEN_HAZ_12
	failure before final	AutoFailMS either (1) informs to the remote pilot and waits for	The severity of the scenario	the intended flight	
	approach, such that the	validation, or (2) informs to the remote pilot and applies the	depends on the failure.	plan is classified as	
	mission continues	action, or (3) applies the action automatically.	MIN (slight increase in pilot	worst severity IV,	
	according to the flight	In case actions required a validation by remote pilot, remote	workload such a routine	potential slight	
	plan, although with initial	pilot validates.	flight changes)	reduction of	
	deviation (recovered)	In case action requires ATC agreement, remote pilot request		separation during final	
	from intended flight path;	ATC permission for temporary diversion from the flight plan.		approach.	
	The distinction is made	If necessary ATC and remote pilot negotiate on possible			
	between this scenario and	diversion from the flight plan.			
	NS-2 due to the potential	ATC accepts the temporary diversion.			
	for impact on ATM and	Remote pilot checks (using information provided by RPS) that			
	other aircraft resulting	reconfiguration has been successfully applied.			
	from the deviation from	Remote pilot informs ATC that RPA is able to return to the			
	the intended flight path.	intended flight path.			
		. ATC accepts return to intended flight path.			
		. RPA returns to the intended flight path			

	Presentation of the		Safety impact in Aircraft	Safety impact in ATC	HaZ
Ident	Scenario	Description of scenarios	and pilot	and controller	
NS-4	Failure during final	Failure occurs to RPAS during final approach which prevents	The AutoFailMS informs to	The effect on ATS	GEN_HAZ_1
	approach such that the	landing at normal landing site (example: failure of landing gear	the remote pilot who	depends on the	GEN_HAZ_2
	aircraft must execute a	during final approach).	validates (if required) the	situation of traffic	GEN_HAZ_4
	missed approach,	AutoFailMS detects failure and determines that it is not possible	action.	around.	GEN_HAZ_5
	followed by successful	to continue with the landing.	The severity of the scenario	The missed approach	GEN_HAZ_12
	reconfiguration of the	AutoFailMS informs to the remote pilot about the issue and the	depends on the failure.	should not be worst	GEN_HAZ_18
	aircraft systems (by the	intention of executing a missed approach.		than IV (slight	GEN_HAZ_17
	AutoFailMS) such that the	Remote pilot validates	The go-around itself is	increase on controller	
	aircraft can return to land	Remote pilot informs the ATC about the missed approach	assessed MIN of MAJ	workload)	
	at the intended landing	If necessary ATC and remote pilot negotiate.	depending on the slope at	Slight impact on	
	site.	ATC accepts	the moment of engine	adherence to flight	
		AutoFailMS instructs RPAS to execute missed approach.	thrust.	plan	
		AutoFailMS reconfigurates RPA			
		Remote pilot checks (using information provided by RPAS) that			
		reconfiguration has been applied.			
		Remote pilot informs ATC that RPA is ready for a new approach			
		at intended landing site.			
		ATC accepts.			
		RPA lands at intended landing site.			

	Presentation of the		Safety impact in Aircraft	Safety impact in ATC	HaZ
Ident	Scenario	Description of scenarios	and pilot	and controller	
Ident NS-5		Failure occurs to RPAS before final approach which prevents landing at normal landing site AutoFailMS detects failure and determines that it is not possible to start the landing AutoFailMS informs to the remote pilot of the issue and the intention of executing a missed approach followed by a		and controller The effect on ATS depends on the situation of traffic around.	GEN_HAZ_1 GEN_HAZ_2 GEN_HAZ_4 GEN_HAZ_5 GEN_HAZ_12 GEN_HAZ_17 GEN_HAZ_18

	Presentation of the		Safety impact in Aircraft	Safety impact in ATC	HaZ
Ident	Scenario	Description of scenarios	and pilot	and controller	
NS-6	non recoverable failure (but where sufficient control remains to allow successful diversion) during final approach causing a missed approach followed by diversion (by the	Failure occurs to aircraft system during final approach which prevents landing at normal landing site (example: failure of landing gear during final approach). AutoFailMS detects failure and determines that it is not possible to continue with the landing. AutoFailMS informs to the remote pilot of the issue and the intention of executing a missed approach followed by a diversion to an alternative landing.	The AutoFailMS informs to the remote pilot who validates (if required) the action. The severity of the scenario depends on the failure. The go-around itself is assessed MIN of MAJ depending on the slope at the moment of engine thrust.	The effect on ATS depends on the situation of traffic around.	GEN_HAZ_1 GEN_HAZ_2 GEN_HAZ_4 GEN_HAZ_5 GEN_HAZ_12 GEN_HAZ_17 GEN_HAZ_18
NS-7	transfer of control to remote pilot following a failure for which the AutoFailMS is unable to determine / execute a safe recovery action, followed by successful recovery by the remote pilot;	Failure occurs to aircraft system. AutoFailMS detects failure and determines that it is not possible for the AutoFailMS to manage it AutoFailMS MS informs to the remote pilot of the issue and the impossibility of managing the issue. Remote pilots passes from "autonomous mode" to "manned mode" Remote pilot executes a successful recovery.	The severity of the scenario depends on the failure. At least this scenario is considered MAJ (significant increase of pilot workload) to HAZ	None. Severity 5	GEN_HAZ_1 GEN_HAZ_5 GEN_HAZ_6 GEN_HAZ_12

	Presentation of the		Safety impact in Aircraft	Safety impact in ATC	HaZ
Ident	Scenario	Description of scenarios	and pilot	and controller	
NS-8	non recoverable failure during landing (by the AutoFailMS)	 Failure occurs to aircraft system during landing which prevents landing at normal landing site (example: failure of landing gear during final approach). AutoFailMS detects failure and determines that it is not possible to continue with the landing is safe conditions. AutoFailMS informs to the remote pilot of the issue. Remote pilots validated a missed approach or continue landing. AutoFailMS informs to the ATM ATM accepts If necessary ATM and remote pilot negotiate. AutoFailMS instructs FMS to execute missed approach. 	The AutoFailMS informs to the remote pilot who validates (if required) the action. The severity of the scenario depends on the failure. From MAJ (go around with negative slope) to CAT (condition that could result in one of more fatalities)	At worst crashing at landing at the airport severity from II to I. Impact on adherence	GEN_HAZ_2 GEN_HAZ_3 GEN_HAZ_4 GEN_HAZ_12 GEN_HAZ_17 GEN_HAZ_18
NS-9	non recoverable failure (but where sufficient control remains to allow successful diversion) during take off	AutoFailMS instruct continue landing in unsafe situation Failure occurs to aircraft system during takeoff that prevents aircraft from continuous taking off AutoFailMS detects failure and determines that it is not possible to continue the take off AutoFailMS informs to the remote pilot of the issue. Remote pilot validates the procedure (continue take off and lands, or stop taking off) AutoFailMS informs to the ATM . ATM accepts If necessary ATM and remote pilot negotiate. AutoFailMS instructs FMS to apply procedure	The severity of the scenario depends on the failure. This scenario is considered MAJ		GEN_HAZ_1 GEN_HAZ_2 GEN_HAZ_5 GEN_HAZ_12 GEN_HAZ_18

Table 33 Normal Scenarios

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	
Issue:	1.1	Classification:	

D.1.1 Requirements: Normal Scenarios

	req	Allocated to	Relat	Related to Scenarios							
			N1	N2	N3	N4	N5	N6	N7	N8	N9
Req-1	AutoFailMS shall provide information of aircraft status to remote pilot	AutoFailMS	х	x	x	x	x	x	x	x	x
Req-2	AutoFailMS shall detect failure conditions	AutoFailMS		х	х	х	х	х	х	х	х
REq-3	AutoFailMS shall manage failure conditions according to autonomy level	AutoFailMS		х	х	х	х	х	х	х	х
Req-4	AutoFailMS shall inform to the remote pilot of a failure condition according to type of failure	AutoFailMS			х	х	х	x			
Req-5	Remote pilot shall manage the failure according to autonomy level	Remote pilot		x	х	х	х	х	х	х	х
Req6	Remote pilot shall inform to the ATC of a potential deviation from intended flight plan (depending on autonomy level)	Remote pilot			x	x	x	x		x	x
REq-7	AutoFailMS shall inform to the ATC of a potential deviation from intended flight plan (depending on autonomy level)	AutoFailMS			х	X	Х	х		x	x
REq-8	Controller shall check the impact of a potential deviation of RPAS on the ATM	ATC			х	х	х	х		x	x
Req-9	AutoFailMS shall guide the RPAS to a landing site	AutoFailMS				х	х	х		х	
Req-10	Remote pilot shall guide the RPAS to a landing site	Remote pilot				х	х	х		х	
Req-11	AutoFailMS shall execute a missed approach	AutoFailMS				х	х	х		х	
Req-12	Remote pilot shall execute a missed approach	Remote pilot				х	х	х		х	
REq-13	ATC shall manage traffic to ensure a safe diversion of an RPAS to a landing site.	ATC				x	х	х		x	

Table 34 Requirements from Normal Scenarios

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	128
Issue:	1.1	Classification:	Restricted

D.2 Failure Scenarios

D.2.1 Failure of AutoFailMS without a second failure in the RPAS

idem	title	Description of scenarios	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HaZ
FC- 01.01- A	loss of the AutoFailMS without second failure	 The loss of AutoFailMS is detected. The pilot receives the alert relative to the loss of AutoFailMS S. The pilot revert to manned mode for failure management After the loss of the AutoFailMS a) The RPAS sends information relative to aircraft status. And the remote pilot in manned mode can detect the failures on board, so the remote pilot can monitor the RPAS. b) The remote pilot continues flying, if the pilot cannot be piloting for a long time, then go to emergency landing site. 	Increase on pilot workload, MIN/MAJ:	Increase on pilot workload, severity IV	GEN_HAZ_4
FC- 01.01- B	undetected loss of the AutoFailMS without second failure	The loss of AutoFailMS is not detected No second failure. NSE In case of second failure, then at worst CAT. Refer to scenario FC-02.01 Hidden failure. Impact on maintenance.	reduction in safety margins or functional capabilities, as no second failure then NSE	reduction in safety margins or functional capabilities, as no second failure then severity 4	N/A
FC- 01.02- A	detected erroneous AutoFailMS without second failure	An erroneous AutoFailMS is detected AutoFailMS informs to the pilot of "malfunctioning AutoFailMS Remote pilot reverts to manned mode. Go to FS-01.01-A	Increase on pilot workload, MIN/MAJ:	Increase on pilot workload, severity IV	GEN_HAZ_5 GEN_HAZ_4
FC- 01.02- B	undetected erroneous AutoFailMS without second failure	AutoFailMS is erroneous but the erroneous behavior is not detected. At worst spurious detection. Refer to "spurious failure detection" scenarios. Go to FS- 03.03-B	refer to spurious scenarios	refer to spurious scenarios	refer to spurious scenarios

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	129
Issue:	1.1	Classification:	Restricted

idem	title	Description of scenarios	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HaZ
FC-	detected	AutoFailMS connects and disconnects intermittently.	Increase on pilot	Increase on pilot	
01.03-	intermittent	The FWS informs to the remote pilot after each modification of autonomous level	workload,	workload, severity	GEN HAZ 5
A	AutoFailMS	The remote pilot disengages the AutoFailMS and passes to manned failure mode	MIN/MAJ:	IV	GEN_HAZ_4
	without second				
	failure	. AutoFailMS does not take erroneous decisions.			
		to be decided with the human factor team the level of workload (MIN/MAJ) for the pilot			
FC-	non-detected	AutoFailMS connects and disconnects intermittently.	reduction in	No physical hit, as	N/A
01.03-	intermittent	At worst the pilot is not aware of the continuous modification of autonomy level. (in	safety margins or	no second failure	
В	AutoFailMS	case of combination AutoFailMS and FWS failure)	functional	then severity IV	
-	without second	no second failure	capabilities, as		
	failure		no second failure		
			then NSE		

Table 35 Failure of AutoFailMS without a second failure in the RPAS scenarios

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	130
Issue:	1.1	Classification:	Restricted

D.2.2 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS

Note all requirements from normal scenarios are applicable to failure scenarios as well.

	req	Allocated to	Related to Scenarios					
			FC-	FC-	FC-	FC-01.02-	FC-	FC-
			01.01-A	01.01-B	01.02-A	В	01.03-A	01.03-B
Req-20	AutoFailMS shall detect the loss of AutoFailMS	AutoFailMS	Х					
Req-21	Aircraft system shall detect the total loss of AutoFailMS (BITE system)	RPAS system	Х					
Req-22	Remote pilot shall revert to manned mode after the loss of AutoFailMS	Remote pilot	Х		Х			
Req-24	The remote pilot shall pilot the RPAS in manned mode for a certain time	Remote pilot	Х		Х		х	
	(maximum time to be decided with human team)							
Req-25	Maintenance Activities shall address the MTBF for the hidden failure	Maintenance	х	х				х
	"undetected loss of AutoFailMS"							
Req-26	Remote pilot shall disengage the AutoFailMS and passes to manned	Remote pilot			Х		х	
	mode after detection of erroneous AutoFailMS							
Req-27	AutoFailMS shall detect the erroneous AutoFailMS, then AutoFailMS	AutoFailMS			Х			
	disconnects							
Req-28	Aircraft system shall detect the erroneous of AutoFailMS (BITE system)	RPAS system			х			
	then AutoFailMS disconnects							

Table 36 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page	
Issue:	1.1	Classification	

D.2.3 Loss of AutoFailMS followed of a second failure on RPAS

D.2.3.1 Loss of AutoFailMS followed of a second failure on RPAS in cruise

					Safety impact in	HAZ
				Safety impact in	ATC and	
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	controller	
FS-	Detected	The remote	AutoFailMS detects the loss of the AutoFailMS	At worst loss of	At worst loss of	GEN_HAZ_5
02.01-	loss of the	pilot can		AutoFailMS	AutoFailMS	GEN_HAZ_2
А	AutoFailMS	control the	Second failure	combined to loss	combined with	GEN_HAZ_10
	combined	RPAS	The RPAS passes to manned mode and RPAS continue sending information	of detect and	loss of C2, then	GEN_HAZ_12
	with a		relative to aircraft status, this information enables the pilot to continue	avoid: Pilot needs	ATC divert traffic	GEN_HAZ_14
	second		managing the potential failures in manned mode.	to ensure the	around. Increase	GEN_HAZ_16
	failure on			collision	of workload.	
	board. In		The remote pilot identifies that there is a second failure on the RPAS	avoidance.	Severity IV	
	cruise		The remote pilot executes the required action to control the RPAS If the	Loss of		
			action requires any modification of the trajectory the pilot informs the ATC	AutoFailMS and		
			Second failure: Loss of C2 (N/A in this scenario)	loss of "detect and		
			After the loss of AutoFailMS, there is a second failure (total loss of C2; refer	avoid". HAZ		
			to scenario FS-02.01-B			
			Second failure: loss of datalink)		
			After the loss of AutoFailMS, the RPAS loss the datalink. ATC cannot contact			
			with the RPAS. Passes to voice comm. Increase pilot workload			
			Second failure: loss of detection and avoid			
			After the loss of AutoFailMS, the RPAS losses the "detect and avoid"			
			capability. The AutoFailMS informs to the remote pilot.			
			The remote pilot informs to the ATM that the RPAS can no longer assure the			
			collision avoidance. Pilot needs to ensure the collision avoidance.			

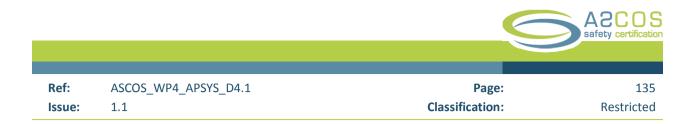
		A2COS safety certification
ASCOS_WP4_APSYS_D4.1	Page:	132
1.1	Classification:	Restricted

Ref: Issue:

Ident	title	Dilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS-	Detected	The remote	AutoFailMS detects the loss of the AutoFailMS	AT worst CAT	AT worst RPAS	GEN HAZ 2
.02.01-	loss of the	pilot cannot		Failure conditions	disappeared. No	GEN HAZ 10
B	AutoFailMS	control the	After the detection of loss of AutoFailMS, the pilot tries to pass to manned	that could result in	communication	GEN HAZ 14
2	combined	RPAS	mode. But, in this case, the pilot cannot pass to manned mode. For the	one or more	with RPAS. Total	GEN HAZ 16
	with a failure		purposes of this scenario, it is considered that the "loss of automation	fatalities.	loss of flight	GEN_HAZ_15
	on board in		change" is a hidden failure, the remote pilot finds out that he cannot pass to		control. Severity	GEN_HAZ_12
	cruise		manned mode when he tries to change the automation level. This is the		1	GEN_HAZ_11
			worst case scenario		Total loss of	GEN HAZ 6
					separation.	
			The AutoFailMS continues sending information relative to RPAS status. In		Severity I	
			this case, the remote pilot knows the intended trajectory of the RPAS		,	
			The pilot informs to the ATC of an "uncontrolled RPAS". ATC triggers the			
			procedure for "uncontrolled RPAS". The RPAS continues sending trajectory			
			updates by datalink. ATC diverts traffic around			
			Second failure			
			Then, the remote pilot identifies a second failure on board The AutoFailMS			
			cannot manage the failure nor the remote pilot. CAT.			
			Second failure: Loss of C2			
			This scenario already considers the loss of control of RPAS by remote pilot.			
			Second failure: Loss of datalink			
			After the loss of AutoFailMS, there is a second failure (total loss of datalink)			
			."Disappeared RPAS" ATC diverts traffic around according to last intended			
			trajectory of the RPAS.			
			Second failure: loss of detection and avoid			
			After the loss of AutoFailMS, there is a second failure (loss of detection and			
			avoid) The pilot cannot assures the avoid and collision function. The remote			
			pilot informs to the ATC of the situation. RPAS continue sending trajectory			
			intend by datalink. ATC divert the traffic around			

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	
Issue:	1.1	Classification:	

Ident	title	Pilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS-	undetected	The remote	The AutoFailMS is loss but the loss is not detected.	AT worst CAT	Total loss of	GEN_HAZ_2
.02.01-	loss of the	pilot can	. <u>Second failure.</u>	Failure conditions	flight control.	GEN_HAZ_10
С	AutoFailMS	control the		that could result in	Severity I	GEN_HAZ_14
	combined	RPAS	The second failure is not detected (loss of AutoFailMS) The pilot does not	one or more	Total loss of	GEN_HAZ_16
	with a failure		pass to manned mode. The RPAS continues flying with a failure, at worst	fatalities.	separation.	GEN_HAZ_15
	on board In		then CAT.		Severity I	GEN_HAZ_12
	cruise		Second failure: Loss of C2			GEN_HAZ_11
			After the undetected loss of AutoFailMS the pilot losses the C2. AT worst			
			CAT			
			Second failure: Loss of datalink			
			After a certain time ATC and/or realizes there is not more information from			
			the RPAS. The remote pilot deduces that the AutoFailMS must have been			
			lost or erroneous, pilot passes to manned mode, but there is a total loss of			
			AutoFailMS. Go to SC-F02.01.A			
			Second failure: Loss of detection and avoid.			
			Pilot is not informed of the loss of detection and avoid function (Loss of			
			AutoFailMS is not detected) Large reduction of safety margins. HAZ			
			Note: undetected loss of AutoFailMS will be eventually detected by remote			
			pilot due to loss of aircraft status messages. Go to SC-F02.01.A			
FS-	undetected	The remote	The pilot cannot detect the loss of AutoFailMS so he does not pass to	AT worst CAT	Total loss of	GEN_HAZ_3
02.01-	loss of the	pilot cannot	manned mode. Same consequences than previous scenario	Failure conditions	flight control.	GEN_HAZ_10
D	AutoFailMS	control the		that could result in	Severity I	GEN_HAZ_14
	combined	RPAS		one or more	Total loss of	GEN_HAZ_16
	with a failure			fatalities.	separation.	GEN_HAZ_15
	on board In				Severity I	GEN_HAZ_12
	cruise					GEN_HAZ_11


Table 37 Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	134
Issue:	1.1	Classification:	Restricted

D.2.3.2 Safety Requirements from scenarios Failure of AutoFailMS without a second failure in the RPAS in cruise

		req	Allocated to	Related to Scenarios				
				FS-02.01-A	FS-02.01-B	FS-02.01-C	FS-02.01-D	
Re	q-30	Maintenance Activities shall address the MTBF for the hidden failure "loss of automation mode"	Maintenance		x			
Re	q-31	ATC shall define procedure for uncontrolled RPAS (e.g. divert traffic around)	ATC		х			
Re	q-32	ATC shall define procedure for disappeared RPAS (e.g. divert traffic around, inform authorities)	ATC		x			
Re	q-33	ATC shall define procedure for RPAS after collision and avoidance loss (e.g. divert traffic around)	ATC	x	x		x	
Re	q-34	Loss of C2 link shall be designed according to DAL A (TBC) (application of ARP4754A/ED79A)	RPAS systems	x	x	x	x	

Table 38 Requirements from Loss of AutoFailMS followed of a second failure on RPAS in cruise Scenarios

D.2.3.3 Loss of AutoFailMS followed of a second failure on RPAS before final approach

				Safaty impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	controller	
FS- 02.02- A	title Detected loss of the AutoFailMS combined with a failure: Before final approach	Pilot control The remote pilot can control the RPAS	Description of the scenario AutoFailMS detects the loss of the AutoFailMS before final approach. The remote pilot needs to perform the approach in manned mode or to decide missed approach. Second failure The RPAS passes to manned mode and RPAS continue sending information relative to aircraft status, this information enables the pilot to continue managing the potential failures in manned mode. The remote pilot identifies that there is a second failure on the RPAS If the action requires any modification of the trajectory or missed approach the pilot informs the ATC Second failure: Loss of C2 (N/A in this scenario) After the loss of AutoFailMS, there is a second failure (total loss of C2; refer to scenario FS-02.02-B Second failure: loss of datalink After the loss of AutoFailMS, the RPAS loss the datalink. ATC cannot contact with the RPAS. Passes to voice comm. Increase pilot workload Second failure: loss of detection and avoid After the loss of AutoFailMS, the RPAS loss the "detect and avoid" capability. The AutoFailMS informs to the remote pilot.	Safety impact in Aircraft and pilot At worst loss of AutoFailMS combined to loss of detect and avoid: Pilot needs to ensure the collision avoidance. Increase of pilot workload before final approach MAJ/HAZ Loss of AutoFailMS and loss of "detect and avoid "in missed approach (or landing) at worst HAZ)	ATC and	GEN_HAZ_5 GEN_HAZ_2 GEN_HAZ_10 GEN_HAZ_12 GEN_HAZ_14 GEN_HAZ_16 GEN_HAZ_17

		Safety certification
ASCOS_WP4_APSYS_D4.1	Page:	136
1.1	Classification:	Restricted

Ref:

Issue:

					Safety impact in	HAZ
				Safety impact in	ATC and	
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	controller	
FS-	Detected	The remote	AutoFailMS detects the loss of the AutoFailMS before final approach	AT worst CAT	AT worst RPAS	GEN_HAZ_3
02.02-	loss of the	pilot cannot		Failure conditions	disappeared. No	GEN_HAZ_10
В	AutoFailMS	control the	After the detection of loss of AutoFailMS, the pilot tries to pass to	that could result in	communication	GEN_HAZ_14
	combined	RPAS	manned mode. But, in this case, the pilot cannot pass to manned mode.	one or more	with RPAS. Total	GEN_HAZ_16
	with a failure		"Loss of automation change" is a hidden failure).	fatalities.	loss of flight	GEN_HAZ_15
	on board.				control. Severity	GEN_HAZ_12
	Before final		The AutoFailMS continues sending information relative to RPAS status. In		1	GEN_HAZ_11
	approach		this case, the remote pilot knows the intended trajectory of the RPAS		Total loss of	GEN_HAZ_6
			The pilot informs to the ATC of an "uncontrolled RPAS". ATC triggers the		separation.	
			procedure for "uncontrolled RPAS". The RPAS continues sending		Severity I	
			trajectory updates by datalink. ATC diverts traffic around in TMA. RPAS is			
			supposed to continue with the landing.			
			Second failure			
			Then, the remote pilot identifies a second failure on board The			
			AutoFailMS cannot manage the failure nor the remote pilot. CAT.			
			Second failure: Loss of C2			
			This scenario already considers the loss of control of RPAS by remote			
			pilot.			
			Second failure: Loss of datalink			
			After the loss of AutoFailMS, there is a second failure (total loss of			
			datalink)			
			."Disappeared RPAS" ATC diverts traffic around according to last			
			intended trajectory of the RPAS. RPAS is in an TMA			
			Second failure: loss of detection and avoid			
			After the loss of AutoFailMS, there is a second failure (loss of detection			
			and avoid) The pilot cannot assures the avoid and collision function. The			
			remote pilot informs to the ATC of the situation. RPAS continue sending			
			trajectory intend by datalink. ATC divert the traffic around RPAS is in			
			ТМА			

S

		A2COS safety certification
ASCOS_WP4_APSYS_D4.1	Page:	137
1.1	Classification:	Restricted

Ref:

Issue:

		D'hat as a had		Safety impact in	Safety impact in ATC and	HAZ
Ident	title		Description of the scenario	Aircraft and pilot	controller	
FS-	undetected	The remote	The AutoFailMS is loss but the loss is not detected.	AT worst CAT	Total loss of	GEN_HAZ_2
.02.02- C	loss of the AutoFailMS	pilot can control the	.Second failure.	Failure conditions	flight control. Severity I	GEN_HAZ_10
C	combined	RPAS	The second failure is not detected (loss of AutoFailMS) The pilot does not	that could result in	Total loss of	GEN_HAZ_14 GEN HAZ 16
	with a failure	RPA3	pass to manned mode. The RPAS continues flying with a failure, at worst	one or more	separation.	GEN_HAZ_10 GEN_HAZ_15
	on board		then CAT. Maybe RPAS crash in TMA.		Severity I	GEN_HAZ_13
	before final		Second failure: Loss of C2	fatalities.	Sevency	GEN_HAZ_12 GEN_HAZ_11
	approach		After the undetected loss of AutoFailMS the pilot losses the C2. AT worst			0111_1172_11
	approach		CAT.			
			Second failure: Loss of datalink			
			After a certain time ATC and/or realizes there is not more information			
			from the RPAS. The remote pilot deduces that the AutoFailMS must have			
			been lost or erroneous, pilot passes to manned mode, but there is a total			
			loss of AutoFailMS. Go to SC-F02.02.A			
			Second failure: Loss of detection and avoid.			
			Pilot is not informed of the loss of detection and avoid function (Loss of			
			AutoFailMS is not detected) Large reduction of safety margins in TMA.			
			HAZ			
			Note: undetected loss of AutoFailMS will be eventually detected by			
			remote pilot due to loss of aircraft status messages. Go to SC-F02.02.A			
FS-	Undetected	The remote	The pilot cannot detect the loss of AutoFailMS so he does not pass to	AT worst CAT	Total loss of	GEN_HAZ_3
02.02-	loss of the	pilot cannot	manned mode. Same consequences than previous scenario	Failure conditions	flight control.	GEN_HAZ_10
D	AutoFailMS	control the		that could result in	Severity I	GEN_HAZ_14
	combined	RPAS		one or more	Total loss of	GEN_HAZ_16
	with a failure			fatalities.	separation.	GEN_HAZ_15
	on board.				Severity I	GEN_HAZ_12
	Before final					GEN_HAZ_11
	approach					

Table 39 Loss of AutoFailMS followed of a second failure on RPAS before final approach scenarios

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	138
Issue:	1.1	Classification:	Restricted

D.2.3.4 Safety Requirements from scenarios Loss of AutoFailMS followed of a second failure on RPAS before final approach

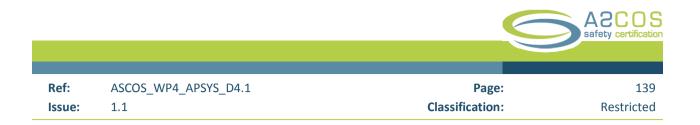

	req	Allocated to	Related to So	Related to Scenarios			
			FS-02.02-A	FS-02.02-B	FS-02.02-C	FS-02.02-D	
Req-40	ATC shall define procedure for uncontrolled RPAS (e.g. divert traffic around) in TMA	ATC		х	Х		
Req-41	ATC shall define procedure for disappeared RPAS (e.g. divert traffic around, inform authorities) in TMA	ATC		х	х		
Req-42	ATC shall define procedure for RPAS after collision and avoidance loss (e.g. divert traffic around) in TMA	ATC	Х	x	x	x	

Table 40 Requirements from Loss of AutoFailMS followed of a second failure on RPAS before final approach scenarios

D.2.3.5 Loss of AutoFailMS followed of a second failure on RPAS during final approach

Ident	title	Pilot control	Description of the scenario
FS-02.03-A	Detected loss of the AutoFailMS combined with a failure: during final approach	The remote pilot can control the RPAS	No relevant difference with FS-02.02-A. To be confirmed after stage 7
FS-02.03-B	Detected loss of the AutoFailMS combined with a failure on board During final approach	The remote pilot cannot control the RPAS	No relevant difference with FS-02.02-A. To be confirmed after stage 7
FS02.03-C	Undetected loss of the AutoFailMS combined with a failure on board During final approach	The remote pilot can control the RPAS	No relevant difference with FS-02.02-A. To be confirmed after stage 7
FS-02.03-D	Undetected loss of the AutoFailMS combined with a failure on board. During final approach	The remote pilot cannot control the RPAS	No relevant difference with FS-02.02-A. To be confirmed after stage 7

Table 41 of AutoFailMS followed of a second failure on RPAS during final approach scenarios

D.2.3.6 Loss of AutoFailMS followed of a second failure on RPAS during landing

				Safety impact in	Safety impact in ATC	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	and controller	
FS-	Detected	The remote	AutoFailMS detects the loss of the AutoFailMS during landing. The	At worst loss of	At worst loss of	GEN_HAZ_5
02.04-	loss of the	pilot can	remote pilot needs to perform the landing in manned mode. Pilot is	AutoFailMS	AutoFailMS	GEN_HAZ_2
А	AutoFailMS	control the	supported by ATOLS	combined to loss	combined with loss	GEN_HAZ_10
	combined	RPAS		of detect and	of C2, then ATC	GEN_HAZ_12
	with a		Second failure	avoid: Pilot	divert traffic around.	GEN_HAZ_14
	failure:		The RPAS passes to manned mode and RPAS continue sending	needs to ensure	Increase of	GEN_HAZ_16
	during		information relative to aircraft status, this information enables the	the collision	workload. Severity	GEN_HAZ_17
	landing		pilot to continue managing the potential failures in manned mode.	avoidance.	III	
			The remote pilot identifies that there is a second failure on the RPAS	Increase of pilot		
			The remote pilot executes the required action to control the RPAS If	workload before		
			the action requires any modification of the trajectory or missed	final approach		
			approach the pilot informs the ATC	MAJ/HAZ		
			Second failure: Loss of C2 (N/A in this scenario)	Loss of		
			After the loss of AutoFailMS, there is a second failure (total loss of C2;	AutoFailMS and		
			refer to scenario FS-02.04-B	loss of "detect		
			Second failure: loss of datalink	and avoid "in		
			After the loss of AutoFailMS, the RPAS loss the datalink. ATC cannot	missed approach		
			contact with the RPAS. Passes to voice comm. Increase pilot workload	(or landing) at		
			Second failure: loss of detection and avoid	worst HAZ		
			After the loss of AutoFailMS, the RPAS losses the "detect and avoid")		
			capability. The AutoFailMS informs to the remote pilot.			
			The remote pilot informs to the ATM that the RPAS can no longer			
			assure the collision avoidance. RPAS is in landing. Pilot needs to ensure			
			the collision avoidance.			

I al a set	4:41 -	Dilat as stral		Safety impact in	Safety impact in ATC	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot		
FS-	Detected	The remote	AutoFailMS detects the loss of the AutoFailMS during landing	AT worst CAT	AT worst RPAS	GEN_HAZ_10
02.02-	loss of the	pilot cannot		Failure	disappeared. No	GEN_HAZ_14
В	AutoFailMS	control the	After the detection of loss of AutoFailMS, the pilot tries to pass to	conditions that	communication with	GEN_HAZ_16
	combined	RPAS	manned mode. But, in this case, the pilot cannot pass to manned	could result in	RPAS. Total loss of	GEN_HAZ_15
	with a failure		mode. ("Loss of automation change" is a hidden failure).	one or more	flight control.	GEN_HAZ_12
	on board.			fatalities.	Severity I	GEN_HAZ_11
	Before final		The AutoFailMS continues sending information relative to RPAS status.		Total loss of	GEN_HAZ_6
	approach		In this case, the remote pilot knows the intended trajectory of the		separation. Severity	GEN_HAZ_3
			RPAS. The RPAS cannot lands (loss of AutoFailMS) and it cannot be		1	
			controlled by the remote pilot. Then CAT.			
			The pilot informs to the ATC of an "uncontrolled RPAS". ATC triggers			
			the procedure for "uncontrolled RPAS". The RPAS continues sending			
			trajectory updates by datalink. ATC diverts traffic around in TMA. RPAS			
			is supposed to continue with the landing.			
			Second failure			
			Then, the remote pilot identifies a second failure on board The			
			AutoFailMS cannot manage the failure nor the remote pilot. CAT.			
			Second failure: Loss of C2			
			This scenario already considers the loss of control of RPAS by remote			
			pilot.			
			Second failure: Loss of datalink			
			After the loss of AutoFailMS, there is a second failure (total loss of			
			datalink)			
			."Disappeared RPAS" ATC diverts traffic around according to last			
			intended trajectory of the RPAS. RPAS is in an TMA			
			Second failure: loss of detection and avoid			
			After the loss of AutoFailMS, there is a second failure (loss of detection			
			and avoid) The pilot cannot assures the avoid and collision function.			
			The remote pilot informs to the ATC of the situation. RPAS continue			
			sending trajectory intend by datalink. ATC divert the traffic around			
			RPAS is in TMA			

Ref: ASCOS_WP4_APSYS_D4.1 1.1 Issue:

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	141
Issue:	1.1	Classification:	Restricted

				Safety impact in	Safety impact in ATC	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	and controller	
FS-	Undetected	The remote	The AutoFailMS is loss but the loss is not detected. AutoFailMS does	AT worst CAT	Total loss of flight	GEN_HAZ_10
.02.02-	loss of the	pilot can	not properly configure the RPAS of landing, so RPAS out of the landing	Failure	control. Severity I	GEN_HAZ_14
С	AutoFailMS	control the	path. ATC detects the failure and contact the pilot. Pilot passes to	conditions that	Total loss of	GEN_HAZ_16
	combined	RPAS	manned mode. At worst the ATC detects lately the RPAS deviation.	could result in	separation. Severity	GEN_HAZ_15
	with a failure		Potential loss of separation	one or more	1	GEN_HAZ_12
	on board		. <u>Second failure.</u>	fatalities.		GEN_HAZ_11
	before final		The second failure is not detected (loss of AutoFailMS) The pilot does			GEN_HAZ_2
	approach		not pass to manned mode. RPAS uncontrolled AT worst CAT.			
			Second failure: Loss of C2			
			After the undetected loss of AutoFailMS the pilot losses the C2. AT worst CAT.			
			Second failure: Loss of datalink			
			After a certain time ATC and/or realizes there is not more information			
			from the RPAS. The remote pilots deduce that the AutoFailMS must			
			have been lost or erroneous, pilot passes to manned mode, but there is			
			a total loss of AutoFailMS. Go to SC-F02.02.A			
			Second failure: Loss of detection and avoid.			
			Pilot is not informed of the loss of detection and avoid function (Loss of			
			AutoFailMS is not detected) Large reduction of safety margins in TMA.			
			HAZ			
			Note: undetected loss of AutoFailMS will be eventually detected by			
			remote pilot due to loss of aircraft status messages. Go to SC-F02.02.A			
FS-	Undetected	The remote	The pilot cannot detect the loss of AutoFailMS so he does not pass to	AT worst CAT	Total loss of flight	GEN_HAZ_10
02.02-	loss of the	pilot cannot	manned mode. Same consequences than previous scenario	Failure	control. Severity 1	GEN_HAZ_14
D	AutoFailMS	control the		conditions that	Total loss of	GEN_HAZ_16
	Combined	RPAS		could result in	separation. Severity	GEN_HAZ_15
	with a failure			one or more	1	GEN_HAZ_12
	on board.			fatalities.		GEN_HAZ_11
	Before final					GEN_HAZ_2
	approach					GEN_HAZ_3

Table 42 Requirements of AutoFailMS followed of a second failure on RPAS during landing scenarios

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	142
Issue:	1.1	Classification:	Restricted

D.2.3.7 Safety Requirements from scenarios Loss of AutoFailMS followed of a second failure on RPAS during landing

	req	Allocated to	Related to Scenarios			
			FS-02.04-A	FS-02.04-B	FS-02.04-C	FS-02.04-D
Req-50	ATC shall define procedure to contact remote pilot in case of abnormal RPAS behaviors	ATC			x	

Table 43 requirements from Loss of AutoFailMS followed of a second failure on RPAS during landing scenarios

D.2.4 Spurious detection of a non-existing failure by AutoFailMS

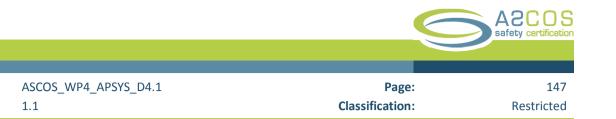
				Safety impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	ATC and controller	
FS-	Detection of	The remote	The AutoFailMS erroneously detect a spurious failure.	At worst	At worst	GEN_HAZ_18
03.01-			Spurious Failure	erroneous	erroneous	GEN_HAZ_16
03.01-	a non-	pilot can	If the remote pilot realizes that there is spurious detection, then remote	detection of a non-	AutoFailMS,	GEN_HAZ_15
А	existing	control the	pilot considers AutoFailMS is erroneous, disconnects the AutoFailMS and	existing failure,	severity I	GEN_HAZ_14
	failure in	RPAS	passes to manned mode. Then go to scenarios "detected loss of	landing in	diversion, landing	GEN_HAZ_13
	cruise		AutoFailMS"	emergency site or	in emergency site,	GEN_HAZ_12
	cruise		If the remote pilot does not realizes then: The AutoFailMS execute an	disconnection of	increase of	GEN_HAZ_10
			erroneous reconfiguration of the aircraft. At worst this reconfiguration	manned mode.	controller	GEN_HAZ_9
			implies	RPAS uncontrolled.	workload at worst	GEN_HAZ_6
			A. Deviation of trajectory. AutoFailMS informs to the remote pilot of the	AT worst CAT	severity III	GEN_HAZ_3
			intention of modifying the trajectory. Negotiation with ATC,			
			b. Landing in an emergency site. AutoFailMS informs to the remote pilot			
			of the intention of modifying the trajectory. Negotiation with ATC			
			Spurious failure: Loss or erroneous 2RC			
			AutoFailMS informs that the C2 is lost or non reliable. Remote pilot			
			thinks that it is no possible to manage the RPAS. RPAS manages			
			autonomously by AutoFailMS without remote pilot. However AutoFailMS			
			is erroneous. Non foreseeable consequences. At worst CAT.			
			Spurious failure is:"total loss or erroneous datalink"			
			The remote pilot continues receiving the data from the aircraft. This is			
			incoherent with the alarm "loss of data-link". The remote pilot is			
			confused, he/she does not know where the RPAS is, nor where it is			
			going. The remote pilot informs the ATC of "disappeared RPAS"			
			ATC diverts traffic around according to last intended trajectory			
			Spurious failure is :"loss/erroneous detect and avoid"			
			The AutoFailMS informs that the "detect and avoid "system is faulty.			
			Remote Pilot assures the collision avoidance. Increase pilot workload.			

Ref: ASCOS_WP4_APSYS_D4.1 1.1 Issue:

Classification:

Res	stri	cte	d

				Safety impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	ATC and controller	
FS-	Detection of	The remote	The AutoFailMS erroneously detect a spurious failure.	At worst	At worst	GEN_HAZ_3
	2 000	nilot cannot	Spurious Failure	erroneous	erroneous	GEN_HAZ_7
03.01-	a non-	pilot cannot	If the remote pilot realizes that there is spurious detection, then remote	detection of a non-	AutoFailMS,	GEN_HAZ_10
В	existing	control the	pilot considers AutoFailMS is erroneous, disconnects the AutoFailMS and	existing failure,	severity I	GEN_HAZ_11
	failure	RPAS	tries to pass to manned mode. But the pilot cannot manage the RPAS.	landing in	diversion, landing	GEN_HAZ_12
			Pilot informs to the ATC that there is an uncontrolled RPAS. ATC diverts	emergency site or	in emergency site,	GEN_HAZ_13
			traffic around.	disconnection of	increase of	GEN_HAZ_14
			If the remote pilot does not realize then: The AutoFailMS executes an	manned mode.	controller	GEN HAZ 15
			erroneous reconfiguration of the aircraft. At worst this reconfiguration	RPAS uncontrolled.		GEN HAZ 16
			implies	Total loss of detect	severity III	GEN_HAZ_18
			A. Unnecessary deviation of trajectory. AutoFailMS informs to the	and avoid		GEN_HAZ_6
			remote pilot of the intention of modifying the trajectory.	CAT		
			b. Unnecessary landing in an emergency site. AutoFailMS informs to the			
			remote pilot of the intention of modifying the trajectory.			
			Spurious failure: Loss or erroneous 2RC			
			AutoFailMS informs that the C2 is lost or non reliable. Remote pilot			
			thinks that it is no possible to manage the RPAS. RPAS manages			
			autonomously by AutoFailMS without remote pilot. However AutoFailMS			
			is erroneous. Non foreseeable consequences. At worst CAT.			
			Spurious failure is:"total loss or erroneous datalink"			
			The remote pilot continues receiving the data from the aircraft. This is			
			incoherent with the alarm "loss of data-link". The remote pilot is			
			confused, he/she does not know where the RPAS is, nor where it is			
			going. The remote pilot informs the ATC of "disappeared RPAS" ATC diverts traffic around according to last intended trajectory of the			
			RPAS.			
			Spurious failure is :"loss/erroneous detect and avoid"			
			The AutoFailMS informs that the "detect and avoid "system is faulty.			
			Remote Pilot tries to manage the RPAS but it is not possible. The pilot			
			cannot assure the "detect and avoid". Pilot informs to the ATC that there			
			is an uncontrolled RPAS. ATC diverts traffic around			
			is an uncontrolled NFAS. ATC diverts traffic around			<u> </u>


				Safety impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	ATC and controller	
FS-	Detection of	The remote	The AutoFailMS erroneously detect a spurious failure. Before finale	At worst	At worst	GEN_HAZ_3
03.02-	a non-	pilot can	approach	erroneous	erroneous	GEN_HAZ_6
А			Spurious Failure	detection of a non-	AutoFailMS,	GEN_HAZ_9
	existing	control the	If the remote pilot realizes that there is spurious detection, then remote	existing failure,	severity I	GEN_HAZ_10
	failure	RPAS	pilot considers AutoFailMS is erroneous, disconnects the AutoFailMS and	landing in	diversion, landing	GEN_HAZ_11
	before final		passes to manned mode. Then go to scenarios "detected loss of	emergency site or	in emergency site	GEN_HAZ_12
			AutoFailMS before final approach"	disconnection of	or missed	GEN_HAZ_13
	approach		If the remote pilot does not realizes then: The AutoFailMS execute an	manned mode.	approach, increase	GEN_HAZ_14
			erroneous reconfiguration of the aircraft. At worst this reconfiguration	RPAS uncontrolled.		GEN_HAZ_15
			implies	AT worst CAT	workload at worst	GEN_HAZ_16
			A. Deviation of trajectory. AutoFailMS informs to the remote pilot of the		severity III	GEN_HAZ_17
			intention of modifying the trajectory. Negotiation with ATC, (maybe			
			missed approach)			
			b. Landing in an emergency site. AutoFailMS informs to the remote pilot			
			of the intention of modifying the trajectory. Negotiation with ATC			
			Spurious failure: Loss or erroneous 2RC			
			AutoFailMS informs that the C2 is lost or non reliable. Remote pilot			
			thinks that it is no possible to manage the RPAS. RPAS manages			
			autonomously by AutoFailMS without remote pilot. However AutoFailMS			
			is erroneous. Non foreseeable consequences. At worst CAT.			
			Spurious failure is: "total loss or erroneous datalink"			
			The remote pilot continues receiving the data from the aircraft. This is			
			incoherent with the alarm "loss of data-link". The remote pilot is			
			confused, he/she does not know where the RPAS is, nor where it is			
			going. The remote pilot informs the ATC of "disappeared RPAS". Voice			
			communication. ATC diverts traffic around according to last intended			
			trajectory of the RPAS. Increase of workload controller			
			Spurious failure is :"loss/erroneous detect and avoid"			
			The AutoFailMS informs that the "detect and avoid "system is faulty.			
			Remote Pilot assures the collision avoidance. Increase pilot workload Act			
			manages the traffic around, RPAS in or close to a TMA.			

Ref: ASCOS_WP4_APSYS_D4.1 1.1 Issue:

Ref:	ASCOS_WP4_APSYS_D4.1
Issue:	1.1

				Safety impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	ATC and controller	
с	Detection of	The remote	The AutoFailMS erroneously detect a spurious failure.	At worst	At worst	GEN_HAZ_3
			Spurious Failure	erroneous	erroneous	GEN_HAZ_7
	a non-	pilot cannot	If the remote pilot realizes that there is spurious detection, then remote	detection of a non-	AutoFailMS,	GEN_HAZ_10
	existing	control the	pilot considers AutoFailMS is erroneous, disconnects the AutoFailMS and	existing failure,	severity I	GEN_HAZ_11
	failure	RPAS	tries to pass to manned mode. But the pilot cannot manage the RPAS.	landing in	diversion, landing	GEN_HAZ_12
	before final		Pilot informs to the ATC that there is an uncontrolled RPAS. ATC diverts	emergency site or	in emergency site,	GEN_HAZ_13
			traffic around. RPAS in or close to a TMA	disconnection of	increase of	GEN_HAZ_14
	approach		If the remote pilot does not realize then: The AutoFailMS executes an	manned mode.	controller	GEN_HAZ_15
			erroneous reconfiguration of the aircraft. At worst this reconfiguration	RPAS uncontrolled.		GEN_HAZ_16
			implies	Total loss of detect	severity III	GEN_HAZ_18
			A. Unnecessary deviation of trajectory. AutoFailMS informs to the	and avoid		GEN_HAZ_6
			remote pilot of the intention of modifying the trajectory.	CAT		
			b. Unnecessary landing in an emergency site. AutoFailMS informs to the			
			remote pilot of the intention of modifying the trajectory.			
			Spurious failure: Loss or erroneous 2RC			
			AutoFailMS informs that the C2 is lost or non reliable. RPAS manages			
			autonomously by AutoFailMS without remote pilot. However AutoFailMS			
			is erroneous. Non foreseeable consequences. At worst CAT.			
			Spurious failure is:"total loss or erroneous datalink"			
			The remote pilot continues receiving the data from the RPAS. This is			
			incoherent with the alarm "loss of data-link". The remote pilot is			
			confused, he/she does not know where the RPAS is, nor where it is			
			going. The remote pilot informs the ATC of "disappeared RPAS"			
			ATC diverts traffic around according to last intended trajectory of the			
			RPAS. RPAS in or close to TMA.			
			Spurious failure is :"loss/erroneous detect and avoid"			
			The AutoFailMS informs that the "detect and avoid "system is faulty.			
			Remote Pilot tries to manage the RPAS but it is not possible. The pilot			
			cannot assure the "detect and avoid". Pilot informs to the ATC that there			
			is an uncontrolled RPAS. ATC diverts traffic around			

Ident	title	Pilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS- 03.03- A	Detection of a non- existing failure during final approach	The remote pilot can control the RPAS	No relevant difference with FS-03.02-A. To be confirmed after stage 7	Refer to FS-03.02- A	Refer to FS-03.02- A	Refer to FS- 03.02-A
FS- 03.03- B	Detection of a non- existing failure during final approach	The remote pilot cannot control the RPAS	No relevant difference with FS-03.02-B. To be confirmed after stage 7	Refer to FS-03.02- B	Refer to FS-03.02- B	Refer to FS- 03.02-B
FS- 03.04- A	Detection of a non- existing failure during landing	The remote pilot can control the RPAS	No relevant difference with FS-03.02-A. To be confirmed after stage 7	Refer to FS-03.02- A	Refer to FS-03.02- A	Refer to FS- 03.02-A
FS- 03.04- B	Detection of a non- existing failure during landing	The remote pilot cannot control the RPAS	No relevant difference with FS-03.02-B. To be confirmed after stage 7	Refer to FS-03.02- B	Refer to FS-03.02- B	Refer to FS- 03.02-B

Table 44 Spurious detection of a non-existing failure by AutoFailMS scenarios

Ref:

Issue:

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	148
Issue:	1.1	Classification:	Restricted

D.2.4.1 Safety Requirements from scenarios Spurious detection of an non-existing failure by AutoFailMS

	req Allocated to Related to Scenarios									
			FS- 03.01 -A	FS- 03.01-B	FS- 03.02-A	FS- 03.02-B	FS- 03.03-A	FS- 03.03-B	FS- 03.04-A	FS-03.04-B
req-60	RPAS system needs to ensure that there is not any single cause implying an spurious failure detection and a faulty C2 (common mode)	RPAS systems	Х		Х		Х		x	
Req-61	RPAS system needs to ensure that there is not any single cause implying an spurious failure detection and a faulty "detect and avoid" (common mode)	RPAS systems		Х		Х		Х		Х

Table 45 Requirements from spurious detection of a non-existing failure by AutoFailMS scenarios

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	149
Issue:	1.1	Classification:	Restricted

D.2.5 Erroneous AutoFailMS

D.2.5.1 Erroneous/Erratic AutoFailMS combined with a second failure on board in cruise

Ident	title	Pilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS- 04.01- A	detected erroneous/er ratic AutoFailMS combined with a second failure on board	The remote pilot can control the RPAS	AutoFailMS detects the erroneous AutoFailMS Then the AutoFailMS reconfigurates itself. If it is no possible to reconfigurate then inform to the remote pilot. AT worst Remote pilot consider loss of AutoFailMS. Go to loss of AutoFailMS scenarios FS-02.01-A	FS-02.01-A	FS-02.01-A	FS-02.01-A
FS- 04.01- B	detected erroneous/er ratic AutoFailMS combined with a failure on board in cruise	The remote pilot cannot control the RPAS	AutoFailMS detects the erroneous AutoFailMS Then the AutoFailMS reconfigurates itself. If it is no possible to reconfigurate then inform to the remote pilot. Remote pilot consider loss of AutoFailMS. Go to loss of AutoFailMS scenarios FS-02.01-B	FS-02.01-A	FS-02.01-A	FS-02.01-A

		A2COS safety certification
ASCOS_WP4_APSYS_D4.1	Page:	150
1.1	Classification:	Restricted

Ref:


Issue:

					Safety impact in	HAZ
				Safety impact in	ATC and	
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	controller	
FS-	undetected	The remote	The AutoFailMS identifies correctly the failure but the decision or	At worst	No control of	GEN_HAZ_5
04.01-C	erroneous/er	pilot can	execution is erroneously applied.	undetected loss	RPAS. Severity I.	GEN_HAZ_2
	ratic	control the		of "detect and	Large reduction	GEN_HAZ_10
	AutoFailMS	RPAS	Second failure.	avoid" function.	in safety	GEN_HAZ_14
	combined		The AutoFailMS executes an erroneous recovery action (refer to scenario	No control of	margins.	GEN_HAZ_16
	with a failure		spurious detection of an erroneous failure) and at the same time, the	RPAS. CAT		GEN_HAZ_3
	on board		AutoFailMS does not manage a real failure (refer to loss of AutoFailMS			GEN_HAZ_6
			scenarios FS.02.01-A).			GEN_HAZ_9
						GEN_HAZ_11
			Second failure. Loss or erroneous 2RC			GEN_HAZ_13
			The AutoFailMS correctly identifies the loss of 2RC, but it applies an			GEN_HAZ_15
			erroneous reconfiguration action. Remote pilot does not pass to manned			GEN_HAZ_18
			mode. At worst undetected loss of control. Loss of RPAS. CAT			
			Second failure is :"total loss or erroneous datalink"			
			AutoFailMS correctly identifies the loss of datalink but it applies an			
			erroneous reconfiguration action. After certain time ATC and/or remote			
			pilot realizes of the loss/erroneous of datalink, Voice communication. Pilot			
			passes to made mode. HAZ/MAJ			
			Second failure is :"loss/erroneous detect and avoid"			
			AutoFailMS correctly identifies the loss/erroneous detect and avoid but it			
			applies an erroneous reconfiguration action. Remote pilot is not informed			
			of the loss/erroneous detect and avoid. Remote pilot does not assure the			
			collision and avoid			

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	151
Issue:	1.1	Classification:	Restricted

					Safety impact in	HAZ
				Safety impact in	ATC and	
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	controller	
FS-	undetected	The remote	The AutoFailMS identifies correctly the failure but the decision or	At worst	No control of	GEN_HAZ_2
04.01-	erroneous/er	pilot cannot	execution is erroneously applied.	undetected loss	RPAS. Severity I.	GEN_HAZ_10
D	ratic	control the		of "detect and	Large reduction	GEN_HAZ_14
	AutoFailMS	RPAS	Second failure.	avoid" function.	in safety	GEN_HAZ_16
	combined		The AutoFailMS executes an erroneous recovery action (refer to scenario	No control of	margins.	GEN_HAZ_15
	with a failure		spurious detection of an erroneous failure) and at the same time, the	RPAS. CAT		GEN_HAZ_12
	on board in		AutoFailMS does not manage a real failure (refer to loss of AutoFailMS			GEN_HAZ_11
	cruise		scenarios FS.02.01-B).			GEN_HAZ_3
						GEN_HAZ_7
			Second failure. Loss or erroneous 2RC			GEN_HAZ_13
			The AutoFailMS correctly identifies the loss of 2RC, but it applies an			GEN_HAZ_15
			erroneous reconfiguration action. Remote pilot does not pass to manned			GEN_HAZ_18
			mode. At worst undetected loss of control. Loss of RPAS. CAT			
			Second failure is : "total loss or erroneous datalink"			
			AutoFailMS correctly identifies the loss of datalink but it applies an			
			erroneous reconfiguration action. After certain time ATC and/or remote			
			pilot realizes of the loss/erroneous of datalink, Voice communication. Pilot			
			ties to pass to manned mode, but it s not possible. Loss of control.			
			HAZ/CAT.			
			Second failure is :"loss/erroneous detect and avoid"			
			AutoFailMS correctly identifies the loss/erroneous detect and avoid but it			
			applies an erroneous reconfiguration action. Remote pilot is not informed			
			of the loss/erroneous detect and avoid. Remote pilot does not assure the			
			collision and avoid			

Table 46 Erroneous/Erratic AutoFailMS combined with a second failure on board in cruise scenarios

D.2.5.2 Erroneous/Erratic AutoFailMS combined with a second failure on board before final approach

Ident	title	Pilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS- 04.02- A	detected erroneous/er ratic AutoFailMS combined with a second failure on board before final	The remote	AutoFailMS detects the erroneous AutoFailMS Then the AutoFailMS reconfigurates itself. If it is no possible to reconfigurate then inform to the remote pilot. AT worst Remote pilot consider loss of AutoFailMS. Go to loss of AutoFailMS scenarios FS-02.02-A	FS-02.02-A	FS-02.02-A	FS-02.02-A
FS- 04.02- B	approach detected erroneous/er ratic AutoFailMS combined with a failure on board before final approach	The remote pilot cannot control the RPAS	AutoFailMS detects the erroneous AutoFailMS Then the AutoFailMS reconfigurates itself. If it is no possible to reconfigurate then inform to the remote pilot. Remote pilot consider loss of AutoFailMS. Go to loss of AutoFailMS scenarios FS-02.02-B	FS-02.02-B	FS-02.02-B	FS-02.02-B

		A2COS safety certification
ASCOS_WP4_APSYS_D4.1	Page:	153
1.1	Classification:	Restricted

Ref: Issue:

				Safety impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	ATC and controller	
FS-	undetected	The remote	The AutoFailMS identifies correctly the failure but the decision or execution	At worst	At worst	GEN_HAZ_3
04.02-C	erroneous/er	pilot can	is erroneously applied.	erroneous	erroneous	GEN_HAZ_5
	ratic	control the		detection of a	AutoFailMS,	GEN_HAZ_6
	AutoFailMS	RPAS	Second failure.	non-existing	severity I	GEN_HAZ_9
	combined		The AutoFailMS executes an erroneous recovery action (refer to scenario	failure, landing in	Diversion, landing	GEN_HAZ_10
	with a failure		spurious detection of an erroneous failure FS-03.02-A) and at the same time,	emergency site	in emergency site	GEN_HAZ_12
	on board		the AutoFailMS does not manage a real failure (refer to loss of AutoFailMS	or disconnection	or missed	GEN_HAZ_11
			scenarios FS.02.02-A).	of manned	approach, increase	GEN_HAZ_13
				mode. RPAS	of controller	GEN_HAZ_14
			Second failure. Loss or erroneous 2RC	uncontrolled.	workload at worst	GEN_HAZ_15
			The AutoFailMS correctly identifies the loss of 2RC, but it applies an	AT worst CAT	severity III.	GEN_HAZ_16
			erroneous reconfiguration action. Remote pilot does not pass to manned			GEN_HAZ_18
			mode. At worst undetected loss of control. Loss of RPAS. CAT			GEN_HAZ_17
			Second failure is : "total loss or erroneous datalink"			
			AutoFailMS correctly identifies the loss of datalink but it applies an			
			erroneous reconfiguration action. After certain time ATC and/or remote			
			pilot realizes of the loss/erroneous of datalink, Voice communication. Pilot			
			passes to made mode. HAZ/MAJ potential missed approach			
			Second failure is :"loss/erroneous detect and avoid"			
			AutoFailMS correctly identifies the loss/erroneous detect and avoid but it			
			applies an erroneous reconfiguration action. Remote pilot is not informed of			
			the loss/erroneous detect and avoid. Remote pilot does not assure the			
			collision and avoid RPAS in or close to a TMA.			

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	154
Issue:	1.1	Classification:	Restricted

				Safety impact in	Safety impact in	HAZ
Ident	title	Pilot control	Description of the scenario	Aircraft and pilot	ATC and controller	
FS-	undetected	The remote	The AutoFailMS identifies correctly the failure but the decision or execution	AT worst CAT	AT worst RPAS	GEN_HAZ_10
04.02-	erroneous/er	pilot cannot	is erroneously applied.	Failure	disappeared. No	GEN_HAZ_14
D	ratic	control the		conditions that	communication	GEN_HAZ_16
	AutoFailMS	RPAS	Second failure.	could result in	with RPAS. Total	GEN_HAZ_15
	combined		The AutoFailMS executes an erroneous recovery action (refer to scenario	one or more	loss of flight	GEN_HAZ_12
	with a failure		spurious detection of an erroneous failure) and at the same time, the	fatalities.	control. Severity I	GEN_HAZ_11
	on board in		AutoFailMS does not manage a real failure (refer to loss of AutoFailMS		Total loss of	GEN_HAZ_3
	cruise		scenarios FS.02.02-B).		separation.	
					Severity I	
			Second failure. Loss or erroneous 2RC			
			The AutoFailMS correctly identifies the loss of 2RC, but it applies an			
			erroneous reconfiguration action. Remote pilot does not pass to manned			
			mode. At worst undetected loss of control. Loss of RPAS in TMA or close to			
			it. CAT			
			Second failure is :"total loss or erroneous datalink"			
			AutoFailMS correctly identifies the loss of datalink but it applies an			
			erroneous reconfiguration action. After certain time ATC and/or remote			
			pilot realizes of the loss/erroneous of datalink, Voice communication. Pilot			
			tries to pass to manned mode, but it s not possible. Loss of control.			
			HAZ/CAT. Uncontrolled RPAS procedure			
			Second failure is :"loss/erroneous detect and avoid"			
			AutoFailMS correctly identifies the loss/erroneous detect and avoid but it			
			applies an erroneous reconfiguration action. Remote pilot is not informed of			
			the loss/erroneous detect and avoid. Remote pilot does not assure the			
			collision and avoid RPAS in or close to a TMA.			

Table 47 Erroneous/Erratic AutoFailMS combined with a second failure on board before final approach scenarios

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	
Issue:	1.1	Classification:	

D.2.5.3 Erroneous/Erratic AutoFailMS combined with a second failure on board during final approach

Ident	title	Pilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS-	detected erroneous/erratic AutoFailMS	The remote pilot can	No relevant difference with FS-04.02-	Refer to FS-	Refer to FS-	Refer to FS-
	-					
04.03- A	combined with a second failure on board before final approach	control the RPAS	A. To be confirmed after stage 7	04.02-A	04.02-A	04.02-A
FS-	detected erroneous/erratic AutoFailMS	The remote pilot	No relevant difference with FS-04.02-	Refer to FS-	Refer to FS-	Refer to FS-
04.03-	combined with a failure on board before final	cannot control the	B. To be confirmed after stage 7	04.02-B	04.02-B	04.02-B
В	approach	RPAS				
FS-	undetected erroneous/erratic AutoFailMS	The remote pilot can	No relevant difference with FS-04.02-	Refer to FS-	Refer to FS-	Refer to FS-
04.03-C	combined with a failure on board	control the RPAS	C. To be confirmed after stage 7	04.02-C	04.02-C	04.02-C
FS-	Undetected erroneous/erratic AutoFailMS	The remote pilot	No relevant difference with FS-04.02-	Refer to FS-	Refer to FS-	Refer to FS-
04.03-	combined with a failure on board in cruise	cannot control the	D. To be confirmed after stage 7	04.02-D	04.02-D	04.02-D
D		RPAS				

Table 48 Erroneous/Erratic AutoFailMS combined with a second failure on board during final approach scenarios

D.2.5.4 Erroneous/Erratic AutoFailMS combined with a second failure on board during landing

Ident	title	Pilot control	Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS- 04.03-A	detected erroneous/erratic AutoFailMS combined with a second failure on board before final approach	The remote pilot can control the RPAS	No relevant difference with FS-04.02-A. To be confirmed after stage 7	Refer to FS- 04.02-A	Refer to FS- 04.02-A	Refer to FS- 04.02-A
FS- 04.03-B	detected erroneous/erratic AutoFailMS combined with a failure on board before final approach	The remote pilot cannot control the RPAS	No relevant difference with FS-04.02-B. To be confirmed after stage 7	Refer to FS- 04.02-B	Refer to FS- 04.02-B	Refer to FS- 04.02-B
FS- 04.03-C	undetected erroneous/erratic AutoFailMS combined with a failure on board	The remote pilot can control the RPAS	No relevant difference with FS-04.02-C. To be confirmed after stage 7	Refer to FS- 04.02-C	Refer to FS- 04.02-C	Refer to FS- 04.02-C
FS- 04.03-D	Undetected erroneous/erratic AutoFailMS combined with a failure on board in cruise	The remote pilot cannot control the RPAS	No relevant difference with FS-04.02-D. To be confirmed after stage 7	Refer to FS- 04.02-D	Refer to FS- 04.02-D	Refer to FS- 04.02-D

Table 49 Erroneous/Erratic AutoFailMS combined with a second failure on board during landing scenarios

			ASCOS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	157
Issue:	1.1	Classification:	Restricted

D.2.6 Inadvertent/uncommanded AutoFailMS connection/disconnection all flight phases

D.2.6.1	Safety Requirements	from Inadvertent/uncommanded AutoFailMS	connection/disconnection all flight
	phases Scenarios		

Ident	title		Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS- 05.01- A	Detected intermittent AutoFailMS connection/disconne ction.	in cruise	The pilot is aware of the connection disconnection difficulty. The pilot knows when the RPAS is in manned on in autonomous mode The pilot manages the failure in manned mode .(refer to scenarios detected loss of AutoFailMS) and monitor the aircraft in autonomous mode.(refer to normal scenarios) Increase of pilot workload	Refer to FS- 02.01-A	Refer to FS- 02.01-A	Refer to FS- 02.01-A
FS- 0501-B	Undetected intermittent AutoFailMS connection/disconne ction.	in cruise	At worst the pilot is not aware of the continuous modification of autonomy level. If pilot considers to be in autonomous mode, then the remote pilot will not control the aircraft after failure at worst CAT (refer to undetected loss of AutoFailMS) If pilot considers to be in manned mode, then control actions decided by remote pilot will be superseded by the AutoFailMS. NSE (in this case, during autonomous mode, the AutoFailMS needs the pilot to confirm control actions, the pilot eventually will detect the failure)	Refer to FS- 02.01-D	Refer to FS- 02.01-D	Refer to FS- 02.01-D
FS- 05.02- A	Detected intermittent AutoFailMS connection/disconne ction.	Before final approach	The pilot is aware of the connection disconnection difficulty. The pilot knows when the RPAS is in manned on in autonomous mode The pilot manages the failure in manned mode .(refer to scenarios detected loss of AutoFailMS) and monitor the aircraft in autonomous mode.(refer to normal scenarios) Increase of pilot workload	Refer to FS- 02.02-A	Refer to FS- 02.02-A	Refer to FS- 02.02-A

Ident	title		Description of the scenario	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
FS- 05.02- B	Undetected intermittent AutoFailMS connection/disconne ction.	Before final approach	At worst the pilot is not aware of the continuous modification of autonomy level. If pilot considers to be in autonomous mode, then the remote pilot will not control the aircraft after failure at worst CAT (refer to undetected loss of AutoFailMS) Total loss of RPAS in TMA or close to TMA If pilot considers to be in manned mode, then control actions decided by remote pilot will be superseded by the AutoFailMS. NSE (in this case, during autonomous mode, the AutoFailMS needs the pilot to confirm control actions, the pilot eventually will detect the failure)	Refer to FS- 02.02-D	Refer to FS- 02.02-D	Refer to FS- 02.02-D
FS- 05.03- A	Detected intermittent AutoFailMS connection/disconne ction.	During final approach	No relevant difference with FS-05.02-A. To be confirmed after stage 7	Refer to FS- 02.03-A	Refer to FS- 02.03-A	Refer to FS- 02.03-A
FS- 05,03- B	Undetected intermittent AutoFailMS connection/disconne ction.	During final approach	No relevant difference with FS-05.02-B. To be confirmed after stage 7	Refer to FS- 02.03-D	Refer to FS- 02.03-D	Refer to FS- 02.03-D
FS- 05.04- B	Detected intermittent AutoFailMS connection/disconne ction.	During landing	No relevant difference with FS-05.02-A. To be confirmed after stage 7	Refer to FS- 02.04-A	Refer to FS- 02.04-A	Refer to FS- 02.04-A
FS- 05.04- B	Undetected intermittent AutoFailMS connection/disconne ction.	During landing	No relevant difference with FS-05.02-A. To be confirmed after stage 7	Refer to FS- 02.04-D	Refer to FS- 02.04-D	Refer to FS- 02.04-D

Table 50 Erroneous/Erratic AutoFailMS combined with a second failure on board during landing scenarios

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	159
Issue:	1.1	Classification:	Restricted

D.2.6.2 Safety Requirements from Inadvertent/uncommanded AutoFailMS connection/disconnection all flight phases

	req	Allocated to	Related to Scenarios							
			FS-	FS-	FS-	FS-	FS-	FS-	FS-05.04-A	FS-05.04-
			05.01-A	05.01-B	05.02-A	05.02-B	05.03-A	05.03-B		В
req-70	RPAS system (CDS) informs to the remote pilot of the	RPAS	Х	Х	Х	Х	Х	Х	Х	Х
	autonomy level	systems								
Req-71	RPAS system informs to the remote pilot of the	RPAS	Х	Х	Х	Х	Х	Х	Х	Х
	modification of autonomy level	systems								

Table 51 Safety Requirements from Inadvertent/uncommanded AutoFailMS connection/disconnection all flight phases

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	160
Issue:	1.1	Classification:	Restricted

D.3 Abnormal Scenarios

D.3.1 Abnormal Scenarios

Ident	title	Description	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
A1	Loss/erroneousC2	If the RC2 link fails then the RPAS will be unable to provide situational	HAZ Loss of the RPA	III significant	GEN_HAZ_2
	datalink.	information to the remote pilot and will be unable to transfer control to the	where it can be	reduction in air	GEN_HAZ_7
		remote pilot.	reasonably expected	traffic control	
		At aircraft level loss of C2 implies RPAS uncontrolled managed by AutoFailMS	that a fatality will	capability	
		This scenario will be addressed in the SSA of C2 (guidelines ARP4754A/ED79A).	not occur		
		The combination of this failure mode with loss/erroneous have been slightly			
		described in previous scenarios. The application of ARP 4754A/ED79A requires a			
		common mode analyses			
A2	datalink Failure	If the datalink (RPAS to ATC) fails then the remote pilot will be unable to	Loss of datalink,	IV increase in air	GEN_HAZ_8
		communicate with ATC via the RPAS As per current procedure voice as a	voice as a backup.	traffic controller	GEN_HAZ_4
		backup.	Increase on pilot	workload	
			workload MAJ		
A3	Intruder in	This intruder would be detected by the "detect and avoid" system, which would	MAJ failure	IV slight increase in	GEN_HAZ_13
	airspace around	take action to avoid the intruder.	condition has a	air traffic controller	
	RPAS	At aircraft level loss of "detect and avoid" implies RPAS cannot assures the	significant increase	workload	
		collision avoidance. It is up to the remote pilot to ensure the collision avoidance	in remote crew		
		function.	workload		
		This scenario will be addressed in the SSA of "detect and avoid" (guidelines			
		ARP4754A/ED79A). The combination of this failure mode with loss/erroneous			
		have been slightly described in previous scenarios. The application of ARP			
		4754A/ED79A requires a common mode analysis			
		The failure mode is the loss of Detect and avoid			
A5	Unexpected	ATC instruct erroneously to the RPAS.	N/A	IV slight increase in	GEN_HAZ_12
		The AutoFailMS has not been designed to mitigate ATM hazards. Trajectory		air traffic controller	
		modifications needs to be validated by the emote pilot (design)		workload	
	from planned				
	flight path				

Ident	title	Description	Safety impact in Aircraft and pilot	Safety impact in ATC and controller	HAZ
A6	Extreme weather conditions	In case of extreme weather condition, RPAS is expected to deviate. As per current practices. A loss/erroneous weather radar will be treated in the related SSA.		-	Out of scope
A7	Busy airspace	In case of RPAS operation in busy airspace. RPAS is expected to be transparent to ATC, in case of failure of RPAS certain procedures are expected from ATC (uncontrolled, disappeared RPAS, etc) ATM needs to assure the capacity to apply these procedure. ATC can define a "maximum" level of PAS allowed in certain airspace.	-	At worst I Total loss of separation	GEN_HAZ_15
A8	Incorrect maintenance of aircraft equipment	The AutoFailMS has not been designed to detect maintenance failure. In case of erroneous AutoFailMS the information is stored in the BITE system, the BITE information is used by maintenance team.	-	-	Out of scope
A9	Incorrect actions by remote pilot	AutoFailMS has not been designed to manage the pilot failures.	-	-	Out of scope

Table 52 Abnormal scenarios

D.3.2 Requirements from Abnormal Scenarios

	req	Allocated to	Related to Scenarios								
			A1	A2	A3	A4	A5	A6	A7	A8	A9
req-80	After loss of datalink voice shall be designed as a back up	RPAS systems		х							
Req-81	Trajectory modifications shall be validated by the remote pilot	Remote pilot					х				
Req-82	ATM shall define a "maximum" level of RPAS allowed in certain airspace.	ATC							х		

Table 53 Requirements from abnormal scenarios

Appendix E RPAS Operation Hazards Classification

E.1 Eurocae UAV Severity matrix

This ER-010 [16] identifies the risk scenarios for unmanned aircraft and their outcomes. According to ER-010 [16] RPAS performs the following functions from immediately after take-off:

- The following of a flight path
- The assurance of safe separation and the avoidance of collision
- Landing

The failure scenarios for the high-level functions failure for an UAV are:

- After occurrence of the failure, the unmanned aircraft is still able to continue its flight according to its intended and planned flight plan FP 1
- After occurrence of the failure, the UAV is not able to continue the flight [...] leading to
 - The UAV follows an unplanned but predictable and safe flight plan in accordance with Emergency Procedures FP 2.1
 - The UAV does not follow its intended and planned flight with the required accuracy while its attitude is still under control, which could lead UAV to fly out of the assigned airspace or even CFIT.
 FP 2.2
 - The UAV enters an uncontrolled flight o taxiing FP 2.3
- After occurrence of the failure, the UAV is still able to land on the normally planned landing site L1
- After occurrence of the failure the UAV is not able to land in the normally planned landing site leading to:
 - The UAV can land or crash at a pre-planned uninhabited emergency site: L2.1
 - The UAV cannot land or crash at a pre-planned u uninhabited emergency site but the remote pilot has still means to select an unplanned uninhabited d emergency site where to land o to crash the UAV L2.2
 - The UAV has neither option L2.1 not L 2.2 and crashes on an uncontrolled manner to at a location totally unpredictable L2.3

Each of these may also have an effect on Separation Avoidance (SA) and Collision Avoidance (CA):

These scenarios are classified according to five levels of severity

Severity	Definition
Class I:	Failure condition that is expected to directly or indirectly hit of third parties in the air or on the
	ground.
Class II:	Failure condition that is not expected to lead to physical hit of third parties in the air or on the
	ground but it is expected to lead to stress to third parties in the air or on the ground as a result
	of nearby collision or crash nearby third parties
Class III	Failure condition that is not expected to lead to physical hit of third parties in the air or on the
	ground nor to stress to third partied in the air or on the ground but it is expected to lead to a
	significant increase in workload to RPAS crew, to ATC,

Ref: Issue:	ASCOS_WP4_APSYS_D4.1 Page: 1.1 Classification:		163 Restricted				
Severity <u>Class IV</u> :	Definition Failure Condition that is not expected to lead to ground nor to stress to third parties in the air or increase in workload to RPAS crew or ATC						
Class V:	Class V: Failure Condition that is not expected to lead to physical hit nor stress to third parties in the air or on the ground and will not increase the workload to RPAS or ATC						

Table 54 Severity matrix as per ER-010 [16]

The scenarios are classified as follows:

			vel End effect of UA			Potential Ef	fect to people	Proposed Class (see A4.4)
		FP	L	SA	CA	Ground	Air	(
1	1.1	FP1 (per flight path)	L1 (Normal)	ок	ок	None	None	V
2	1.2	FP1 (per flight path)	L1 (Normal)	NOK	ок	None	Stress	Ш
3	1.3	FP1 (per flight path)	L1 (Normal)	ок	NOK	None	None	IV
4	1.4	FP1 (per flight path)	L1 (Normal)	NOK	NOK	Physical	Physical	1
5	2.1	FP2.1 (Emergency)	L1 (Normal) or L2.1 (Predefined)	ок	ок	None	None	IV
6	2.2	FP2.1 (Emergency)	L1 (Normal) or L2.1 (Predefined)	NOK	ок	None	Stress	Ш
7	2.3	FP2.1 (Emergency)	L1 (Normal) or L2.1 (Predefined)	ок	NOK	None	None	ш
8	2.4	FP2.1 (Emergency)	L1 (Normal) or L2.1 (Predefined)	NOK	NOK	Physical	Physical	1
9	3.1	FP2.1 (Emergency)	L2.2 (Unplanned selected)	ок	ок	None	None	ш
10	3.2	FP2.1 (Emergency)	L2.2 (Unplanned selected)	NOK	ок	None	Stress	Ш
11	3.3	FP2.1 (Emergency)	L2.2 (Unplanned selected)	ок	NOK	None	None	ш
12	3.4	FP2.1 (Emergency)	L2.2 (Unplanned selected)	NOK	NOK	Physical	Physical	I
13	4.1	FP2.2 (inaccurate navigation)	-	-	-	-	-	l (Worst case)
14	7.1	FP2.3 (Uncontrolled flight)	L2.3 (Unplanned unselected)	-	-	Physical	Physical	I

Table 55 Severity allocation to failure scenarios for UAV operations in ER-010 [16]

			ASCOS safety certification	
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	164	
Issue:	1.1	Classification:	Restricted	

E.2 JARUS RPAS Severity matrix

JARUS presents an update on the definition of CAT, HAZ, MAH, MIN and NSE currently on the ARPS 4754^a. These definitions are updated to include the RPAS operations.

Severity	Definition
NSE	Failure conditions that would have no effect on safety. For example, failure conditions that would not affect the operational capability of the RPAS or increase the remote crew workload.
MIN	Failure conditions that would not significantly reduce RPAS safety and that involve remote crew actions that are within their capabilities. Minor failure conditions may include a slight reduction in safety margins or functional capabilities, a slight increase in remote crew workload, such as flight plan changes.
MAJ	Failure conditions that would reduce the capability of the RPAS or the ability of the remote crew to cope with adverse operating conditions to the extent that there would be a significant reduction in safety margins, functional capabilities or separation assurance. In addition, the failure condition has a significant increase in remote crew workload or impairs remote crew efficiency.
	(E.g. Total loss of communications with ATC.)
HAZ	 Failure conditions that would reduce the capability of the RPAS or the ability of the remote crew to cope with adverse operating conditions to the extent that there would be the following: (i) Loss of the RPA where it can be reasonably expected that a fatality will not occur, or (ii) A large decrease on safety margins or (iii) High workload such that the remote crew cannot be relied upon to perform their tasks accurately or completely.
	 Possible examples of 'a large reduction in safety margins or functional capabilities' might include: Unintended deviations from the flight path if operating in the open airspace; Potential loss of safe separation (e.g. loss of D&A, incorrect altitude reporting); Activation of an emergency recovery capability potentially resulting in loss of the RPA where a fatality is not expected to occur.
CAT	Failure conditions that could result in one or more fatalities.
	This refers to one or more fatalities that can occur either in the air (mid-air collision) or on the ground. Where type-certification does not stipulate any limitations on type of airspace to be used and areas to be overflow, the design assumption must be that any failure condition leading to a crash, mid-air collision or forced landing, is potentially fatal.
	 Examples of potentially Catastrophic failure conditions include: Loss of control leading to impact with the surface outside of a pre-defined safe area; Loss of the command & control datalink (Complexity Level I & II) outside of a pre-defined safe area; Loss of control leading to the inability of a RPA to be contained within a pre-defined segregated area; Malfunction of a D&A system that actively guides the RPA towards neighboring traffic.

Table 56 Severity matrix as per JARUS [9]

			A2COS safety certification
Ref:	ASCOS_WP4_APSYS_D4.1	Page:	
Issue:	1.1	Classification:	

JARUS suggests as well quantitative (pro/FH) and qualitative (DAL) objective for theses failure conditions.

• For quantitative objective:

Aircraft type	Complexity Level	Accident rate (pfh) All Causes (Note 1&4)	% due to Systems (10%) (Note 2)	Number of Potential Failure Conditions	Probability of a single Catastrophic failure condition
Manned CS-25		1x10 ⁻⁶	1x10 ⁻¹	100 (10 ⁻²)	1x10 ⁻⁹
RPAS CS-25	N/A (Note 3)	1x10 ⁻⁶	1x10 ⁻¹	100 (10 ⁻²)	1x10 ⁻⁹

Table 57 Quantitative safety objective for CAT as per JARUS [9]

Safety objective for non catastrophic condition might be derived as in ARP4754A/ED79A (10E-7 for HAZ, 10E-05 for MAJ, 10E-03 for MIN, etc...)

Classification of failure Conditions	No Safety Effect	<minor></minor>	<major></major>	<hazardous.></hazardous.>	<catastrophic></catastrophic>
Allowable Quantitative	No Probability	Probable	Remote	Extremely	Extremely
Probability	Requirement			Remote	Improbable
	No Effect on	Slight reduction	Significant	Large	Flight into
Effect on the Aircraft	operational	in functional	reduction in	reduction in	terrain
	capabilities or	capabilities or	functional	functional	(Normally with
	safety	safety margins	capabilities or	capabilities or	hull loss)
	-		safety margins	safety margins	

Table 58 Safety objective for NSE, MIN, MAJ, HAZ and CAT as per JARUS [9]

• For qualitative objective:

DAL allocation under revision

Class of	Complexity	Allowable Quantitative Probabilities and DAL				
RPAS	Level (CL)		-	(Note 2)		
RPAS-25	N/A		See AMC 25.1309			
RPAS-29	N/A	See AC 29-2C, AC 29.1309				
RPAS-23 Class I (SRE under 6,000Ibs)	І&П	No probability/DAL Requirement	<10 ⁻³ P=D, S=D (Notes 1 & 4)	<10 ⁻⁴ P=C, S=D (Notes 1 & 4)	<10 ⁻³ P=C, S=C (Note 4)	<10 ⁻⁶ P=C (CL I) P=B (CL II) S=C (Notes 3 &4)
	ш	No probability/DAL Requirement	<10 ⁻³ DAL=D (Notes 1 & 4)	<10 ⁻⁵ DAL=C (Notes 1 & 4)	<10* DAL=B (Note 4)	<10 ⁻⁷ DAL=A (Note 3)
RPAS-23 Class II (MRE, STE or MTE under	І&П	No probability/DAL Requirement	<10 ⁻³ P=D, S=D (Notes 1 & 4)	<10 ⁻⁸ P=C, S=D (Notes 1 & 4)	<10 ⁻⁴ P=C, S=C (Note 4)	<10 ⁻⁷ P=C (CL I) P=B (CL II) S=C (Notes 3 &4)
6000Ibs).	ш	No probability/DAL Requirement	<10 ⁻³ DAL=D (Notes 1 & 4)	<10 ⁻⁸ DAL=C (Notes 1 & 4)	<10 ⁻⁷ DAL=B (Note 4)	<10 ⁻⁸ DAL=A (Note 3)
RPAS-23 Class III (SRE, MRE, STE or MTE	I&Ⅱ	No probability/DAL Requirement	<10 ⁻³ P=D, S=D (Notes 1 & 4)	<10 ⁻⁵ P=C, S=D (Notes 1 & 4)	<10-7 P=C, S=C (Note 4)	<10 ⁻⁸ P=C (CL I) P=B (CL II) S=C (Notes 3 &4)
> 6000Ibs).	ш	No probability/DAL Requirement	<10 ⁻³ DAL=D (Notes 1 & 4)	<10 ⁻⁵ DAL=C (Notes 1 & 4)	<10 ⁻⁷ DAL=B (Note 4)	<10" DAL=A (Note 3)

Table 59 Qualitative Safety objective for NSE, MIN, MAJ, HAZ and CAT as per JARUS [9]

Appendix F ED-78A Guidelines for Approval of the provision and use of Air Traffic services supported by data communications.

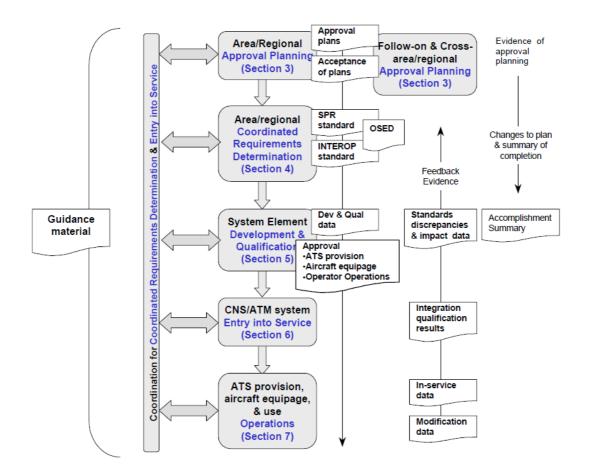


Figure 14 Process for ATS supported by DATA communication [17]